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We solve exactly the general one-dimensional O(N )-invariant spin model taking
values in the sphere S¥~!  with nearest-neighbor interactions, in finite volume
with periodic boundary conditions, by an expansion in hyperspherical har-
monics. The possible continuum limits are discussed {or a general one-parameter
family of interactions and an infinite number of universality classes is found. For
these classes we compute the finite-size-scaling functions and the leading correc-
tions to finite-size scaling. A special two-parameter family of interactions (which
includes the mixed isovector/isotensor model}) is also treated and no additional
universality classes appear. In the appendices we give new formulae for the
Clebsch-Gordan coefficients and 6-/ symbols of the O(N) group, and some new
generalizations of the Poisson summation formula; these may be of independent
Interest,
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1. INTRODUCTION

The purpose of this paper is to study the continuum limits and finite-size-
scaling functions in a general class of one-dimensional O(N)-invariant spin
models (also called nonlinear o-models). Despite the relatively trivial

! Department of Physics, New York University, New York, New York, 10003; e-mail:
attilioc(@ acf2.nyu.edu, mendes(@ mafalda.physics.nyu.edu, sokal@nyu.edu.

2 Dipartimento di Fisica, Universita degli Studi di Pisa, Pisa 56100, Italy; e-mail: pelisset(@
ibmth1.difi.unipi.it.

581

0022-4715/97/0200-0581812.50/0 « 1997 Plenum Publishing Corporation



582 Cucchieri et al.

nature of physics in one dimension, this exercise is interesting for several
reasons:

1. Two-dimensional nonlinear o-models are of direct interest in
condensed-matter physics, and they are of indirect interest in elementary-
particle physics because they share with four-dimensional gauge theories
the property of perturbative asymptotic freedom."' *' In particular, recent
work'> 7" combining Monte Carlo simulations and heuristic analytic
arguments has suggested the possible existence of new universality classes
for the two-dimensional O(N)-invariant lattice o-model with mixed
isovector/isotensor action. The present work was motivated by the idea of
investigating the occurrence of analogous universality classes in the one-
dimensional case, where an exact analytic treatment is possible.*

2. A second motivation was to perform the computation of an exact
finite-size-scaling function (as well as the leading correction to it) for a
nontrivial spin model. Finite-size scaling has become increasingly impor-
tant in the analysis of Monte Carlo data."™*’ (For example, the functions
derived in this paper can be used for comparison in the multigrid Monte
Carlo study of the one-dimensional O(4)-symmetric nonlinear g-model.''"")
Moreover, finite-size scaling is the basis of an important new method for
extrapolation of finite-volume Monte Carlo data to infinite volume.''' '* It
is also useful to know something about the corrections to finite-size scaling,
In particular, in the new methods for extrapolation to infinite volume, it is
crucial to understand the corrections to finite-size scaling because they
induce systematic errors in the extrapolation.

3. Finally, our solution method makes use of the functions defined by
the generalization of the usual spherical harmonics to the N-dimensional
unit sphere SV ', which we call hyperspherical harmonics. Although these
functions are well known,"'*'”’ we were unable to find any convenient list
of their properties in the literature, and therefore we thought that it would
be useful to make a compendium of the relevant properties and formulae.
In particular, we were unable to find the Clebsch~Gordan coefficients
anywhere in the literature (although they, too, are probably known). Using
the representation of hyperspherical harmonics as completely symmetric
and traceless tensors,* the computation of the Clebsch-Gordan coefficients
is a straightforward combinatoric exercise. Indeed, we can go further
and compute many of the 6—; symbols. We believe that hyperspherical

* We thank Erhard Seiler for the suggestion to do this.

* This representation is of course well known, but it is not (so far as we know) employed in
any ol the standard treatises on hyperspherical harmonics. As we shall show here, this
representation is an extremely convenient one: one of the purposes of this paper is to make
some advertising on its behalf.
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harmonics constitute the most efficient approach to the derivation of high-
temperature expansions for O(N)-invariant spin models taking values in
SV~ Indeed, they have been used for this purpose by the King’s College
group®®2 and others,*>?”) but the methods were cumbersome, in part
due to the lack of convenient expressions for the Clebsch—Gordan coef-
ficients. In addition to the work reported here, we have recently used these
methods to make significant extensions of the high-temperature expansions
for various two- and three-dimensional O(N)-invariant spin models. The
technique is explained in refs. 28 and 29, and applications can be found in
refs. 29-31. The method can also be extended to U(N)-invariant spin
models, such as the general CPY~' model.**

This paper is organized as follows: The hyperspherical harmonics are
introduced in Section 2, where we also explain how they are used in the
expansion of the Gibbs weight exp( — #). In Section 3 we give the exact
solution for the general one-dimensional S¥~' g-model in finite volume, as
well as its infinite-volume limit. All expressions are written in terms of the
normalized expansion coefficients v, ;, (which generalize the well-known
v=tanh J for the Ising case N=1). In Section 4.1 we discuss in detail the
possible continuum limits for one-parameter Hamiltonians by performing
the large-J (ie., low-temperature) expansion of vy ,(J), and we show the
appearance of infinite families of universality classes. The finite-size-scaling
functions and the corresponding corrections to finite-size scaling are given
in Sections 4.2 and 4.3, respectively. Finally, in Section 5 we analyze a class
of two-parameter Hamiltonians—which includes, among others, the mixed
isovector/isotensor model studied in refs. 5-7—and we show that no
additional universality classes appear beyond the ones already found in
Section 4.1. In Appendix A we provide proofs of various properties of the
hyperspherical harmonics, including the Clebsch—-Gordan coefficients and
some of the 6—j symbols. In Appendix B we analyze the finite-size-scaling
functions for a one-parameter family of universality classes that includes
those of the mixed isovector/isotensor model; this analysis is based on
generalized Poisson summation formulae applied to some generalized theta
functions. (We think these formulae may be of independent interest; as
far as we know they are new.) In Appendix C we study the limit N — oo of
the finite-size-scaling functions for the standard N-vector universality
class.

Note Added. We have recently received a preprint of Seiler and
Yildrim*# that extends our study of the continuum limit to an n-parameter
family of Hamiltonians generalizing the mixed isovector/isotensor model.
Their conclusions are similar to ours.

822/86/3-4-9
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2. HYPERSPHERICAL HARMONICS

The purpose of this section is to introduce the hyperspherical har-
monics, which will give the basis for expanding the Gibbs weight e~ for
our spin models. From the mathematical point of view this is connected
with doing harmonic analysis on the unit sphere SV ~' < R" acted on trans-
itively by the compact connected Lie group SO(N).*® More precisely, let
us consider:

e geSV!

e ReSO(N)

« the normalized rotation-invariant measure d2(¢) on SV ~!

o the (complex-valued) square-integrable functions fe L}(S¥~")

« the unitary representation T(R) of SO(N) on L*(S"~"') defined by
(T(R) f)(e)=f(R" o).

Then we want to find an orthogonal Hilbert-space decomposition of
L*(S™~") into subspaces such that the representation T(R) restricted to
each subspace is irreducible. The needed decomposition turns out to be
precisely the decomposition of L*(S™V~') into eigenspaces of the Laplace—
Beltrami operator ¥ = %ev-1.° ¢ In fact, it can be proved that (see ref. 36,
Theorem 3.1, pp. 17-19):

(a) The eigenvalues’ of & are

Ahﬂk==k(pv+-k__2);30 (21)

* The Laplace-Beltrami operator on S¥~' can be defined as follows: Define on R” the vector
fields (“angular-momentum operators”)

Then the restriction to S¥~' of each L* is a vector field on S¥~', and

=y L¥LS

Iga<fgN

is the Laplace-Beltrami operator on SV~

% We remark that, for N > 3, & generates the algebra D(SV ') of SO(N )-invariant differential
operators on S¥~!. [For N=2 this is not the case, because 3/00 is an SO(2)-invariant
differential operator not belonging to the algebra generated by .%. But if we consider dif-
ferential operators invariant under O(N) instead of SO(N), then the assertion is true also for
N=2]

"Note that our & is the negative of the usual Laplacian, ie., it is a positive-semidefinite
operator.
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where k=0, 1, 2,.... The corresponding eigenspace E , has dimension®

_ N+2%—2I(N+k—2)
k! N—1)

Ny =dim Ey , (2.2)

and can be given several equivalent descriptions:

(i) Ey, . consists of the restrictions to SV~ of the harmonic polyno-
mials of degree k on R (namely, the homogeneous polynomlals of degree
k that satisfy Laplace’s equation on R"Y).

(ii) Ey . is spanned by the functions f(¢) =(a*¢)* with aeC" and

(iii) Ey . is spanned by the completely symmetric and traceless tensors
Y% ;. ™(e) of rank k, as the indices «,, a,,..., a, range over the N* allowable
values.® (These tensors are described in more detail below.) Of course, since
in general N* >dim E ,, the Y%, *(¢) form an overcomplete set.

(b} Each eigenspace E, , is left invariant by T(R). Moreover, for
N >3 the representation T(R) [ E , of SO(N) is irreducible.'®

® For a proof see ref. 36, Exercise A.5(i) (pp. 74, 552), and rel. 15, Lemma 3 (p. 4). See also
Appendix A.l below. Usually we are interested in the case N > 3, for which formula (2.2) is
unambiguous. But (2.2) is also valid for N=1,2 if it is interpreted as an analytic (in fact
polynomial) function of N for each fived integer k 2 0. Thus. for N=1 and N=2 we have

o . N+2k-2NN+k-2)
‘l'~k=d'mE‘-*=,b'Tl X FIN=1)

and
R o N42k=2T(N+k-2)
.IM=dlmEl_,\,—‘!’|_1312 o N=T)

)1 for k=0
12 for k=1
Note also that .ty =1 and .4, =N for all N.

Y The functions (a- ¢)* used in description (ii} above are linear combinations of the Vs [see
Eq. (2.3}], namely

(a-0f =uzl 2 ay - a, YR (0)
{ad
The condition ¥~ a; 2 =0 ensures that the “Traces” in (2.3) make no contribution.
" For N =2 the group is Abelian, and the spin-k representation for k > 1 decomposes into the
two irreducible representations ¢**, However, if we consider O(N) rather than SO(N),
then the representation is irreducible also for N=2.
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(c) LSV ""Y=@®;_ ,Ew . (orthogonal Hilbert space decomposi-
tion).

To make all this concrete, we can write

YN o) =puy (0 - 0% — Traces) (23)

where 6€.S" ™', “Traces” is such that Y%, *(o) is completely symmetric
and traceless [namely'' J,, Y3 . *(¢)=0 for any i # j], and

_[2*I(N[2+ k)]
v k"[ k! T(N/2) ] (24)
Explicit examples are
Yy olo)=1 (2.5)
Y% (6)=./No" (2.6)

vyt (o) = A2 (o0 -5 o) 27
IN(N+2)}N+4
Y‘,’:,/‘”S(c)= %

1
X [ o%ofo” — Ni2 (667 + 6%a” + 5/”0“)] (2.8)

v

NN+ 2)(N+4)(N+6)
)=/ 24

X 1 )
X e ff ) O afy -y 0 3
x| o%0’076° ——— (6*07¢” + 5 permutations
[ N+4( P )

1 aff §y0 ay S S od Sy :|
+—(N+2)(N+4)(5 070 4 G 4 520 (2.9)
[ The general formula is given in Eq. (A.17).] We note that for N =3 the
Y’s are linear combinations of the usual spherical harmonics, and
dim E; , =2k + 1. Similarly, for N=2 the Y’s are linear combinations of
cos k# and sin k6 (or equivalently of e**?), and dim E, ,=2 for k> 1. For
N=1, Yy, vanishes for k=2, while Y, yj=1and Y, ,=0.

" The usual summation convention will be used in this paper from now on.
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The normalization u , is chosen so that the following orthogonality
relation holds (see Appendix A.2):

jdg(c) Y3 (6) YA Pg) = 8, T2y b b (2.10)

where I #iB is the unique orthogonal projector onto the space of
completely symmetric and traceless tensors of rank k&, defined by the
following properties (see Appendix A.3):

1. Complete symmetry in the indices « and in the indices f.

2. Symmetry under the total exchange «; « f3; for all i.

3. O, A5 =0 for any i # .

4. I xR M= T30 for any completely symmetric and
traceless tensor Ty ;.

As special cases of condition 4 we have

I,{,_,\.=IN~,\. (2.11)
and
I beyl Pe) = Y5 1 ™(0) (2.12)
For example, we have
Ij‘v’{ =5 (2.13)
1 1
I“Iﬂgi/’.IﬂZ:_ a1 51 §xafi2 apryeabry _ — guaghih 2.14
N3 3 (o hgml 4 subrgal) N ( )

If}x\;m%m:/fu Bafsz =l [5a|/1|6a2/115z3/!'3 + Suhrgafguh + o1 hguabigu
- 6

+ S A grafz g + 511/33512/3250‘3/!1 + Jallfzaazlilglalia]

_T]vl_i_—z) [5a|u2(5/1'|/f25a3/33 + S Bgaas +5/r1/f3513/1,)
+ 6a|u3(§lf|/i25az:/ia + P mgab 5/:’2/3;50(2/;1)
+ 5512013(5/f|/i2501|/1'3 4 5P BB 5”3/’-‘5“‘/‘1)] (2.15)

[ The general formula is given in Eq. (A.27).] The trace of this operator is
given by [see (A.35)/(A.36)]

17\;‘-/;~ak:ml-.-ak=,/1/'}v.k =dim EN,k (2.16)
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as of course it must be. We remark that
Yy (0) Yy (o)=Y ™(6) YT (o)
is independent of ¢ [by O(N) invariance], and hence
Yy o) Yy 6)=Ay (2.17)

by (2.10) and (2.16).

As stated in the theorem given at the beginning of this section, the
hyperspherical harmonics are a complete set of functions on L*(S"V').
Thus any function f{¢) can be expanded as

flo)=Y Fo =y, (o) (2.18)
k=0
where
Fom=[de) fio) Vi) (2.19)

For smooth functions this expansion converges very fast. Indeed, if f(6) is
infinitely differentiable, then for k — oo the coefficients of the expansion go
to zero faster than any inverse power of k (see Appendix A .4).

The completeness of the hyperspherical harmonics can be expressed
through the relation'?

s

Y YR o) YA M(r)=d(s, 1) (2.20)

k=0

where the d-function is defined with respect to the measure dQ(e).

Finally, let us consider an invariant function of two “spins” o, te
SV ie, a function of ¢-1."* We want now to compute its expansion in
terms of hyperspherical harmonics. Using Schur’s lemma (see Appen-
dix A.4), we can write

flo-1)= Z Fy Yy ilo) - Yy (1) (2.21)
k=0

12 Nole that the normalization here follows directly from the one defined for (2.10).

'* For N=2 there are functions of &, T which are SO(2)-invariant [but not O(2)-invariant]
and are nor functions of ¢ - t: namely, they can depend also on ¢ X 1. We are not interested
in such functions.
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We can drop the “Traces” terms of either one of the ¥’s in the scalar
product above, since the other Y is traceless. Also, since the scalar product
is rotationally invariant, we can rotate ¢ to w=(1,0,..,0) and corre-
spondingly rotate T to some p with 6-t=w:p=p'. In this way we obtain

Yy ilo) Yy (t)=Yy (W) Yy (p)
=y W W YR P) =pn Y (P) (222)

Now Y, ;'(p) can be expressed in terms of Gegenbauer polynomials
(ref. 37, pp. 1029-1031) (this corresponds to the relation between Y, and
Legendre polynomials for the usual spherical harmonics) as (see
Appendix A.2)"*

V .CN/Z—l(pl)
i (p) = Tk 223
A TP 223

and therefore

€Y o 1)

Yy ilo) Yy (1) =Hy CV() (2.24)
In particular, for w= (1, 0,..., 0), we have
Nk
Y (w) =" (2.25)
HUn i

From Eq.(2.21), using the orthogonality relations, the rotational
invariance of the measure, and Eqs. (2.17) and (2.24), we get

Ci2~'(p")
FN.A-=Jd9(p)f(p‘)W (2.26)

¥ For N=2 this relation is singular, since CJ(x)=0. This singularity is due simply to the
normalization convention of the Gegenbauer polynomials, and indeed the limit N — 2 is
well-defined. The result is simply

. C¥2V(cos 0) T,(cos 0))
_ e = k0=
ey =R

where Ti(#) are the Chebyshev polynomials of the first kind [see ref. 37, formulas 8.934.4
(p. 1030) and 8.940.1 (p. 1032)].
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Now the integrand depends only on p' and we can integrate out the other
coordinates. We finally get

S ! Sz gy S22 (D)
= 1 — ) N=302 f(g) S —— = 227
Fri==g [ ara=o g ) v (227)
where % is the surface area of the N-dimensional unit sphere:
27tN/2
= 228
Y= TR (2.28)

From the general properties of the hyperspherical harmonics we can derive
the following properties of the coefficients F, , (for the proofs of proper-
ties 1 and 2, see Appendix A.4):
1. If f(t) is positive'* for te [ —1, 1], then |Fy ;| < Fy o for all kK #0.
2. If f(¢) is smooth (ie., C*), then lim, _ . k"F, , =0 for every n.

3. If f(z)=1', then the integral in (2.27) can be performed explicitly
(ref. 37, formula 7.311.2, p. 826) and the coefficients F, , are given by

L(NR2) I(1+1) i )
if k+/lisevenand k </
FY), =< 2'TUN+k+1/2) I((I-k)2+1) (2.29)

0 otherwise

and are, in particular, always nonnegative. It immediately follows that for
a generic function

)= i (2.30)

the coefficients F , are given by
1=k
Therefore, if all the coefficients f; are nonnegative, then so are the F, ,.

In particular, using (2.27) or (2.31), it is possible to compute the coef-
ficients F , for the functions exp[ J(c - 1)] and exp[3/(c - t)?]. In the first

case we obtain
N J [ —N/2
F/v.k=r<5><§> IN/2+k—I(J) (2.32)

'* More precisely, it suffices that f be nonnegative and not almost-everywhere vanishing.
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where I, is the modified Bessel function'®; in the second case the integration
gives

T(N/2) T((k +1)/2) ( )A/z <k+1 N J
1471 k

Fyi={ /nL(N2+k) \2 272

0 for odd k

) foreven k
(2.33)

where | F, is the confluent (degenerate) hypergeometric function (ref.37,
pp. 1058-1059). These two expansions will be used in the next section.

Let us now compute the Clebsch-Gordan coefficients. In general we
can write

YT\}_',;,'““‘(O') Y/lf\}"l"/fl(c ZGg 1& Bue-- By ym Y}’I (@) (2.34)

W
m

Using the orthogonality relations (2.10), we obtain

(g% i aA A /}"""""’"=Jd.Q(6) Y“‘ au(o-) Y/fl /”(o‘) Y)l )m(o-) (2.35)

i

This integral can be computed explicitly. We get (see Appendix A.5)

@ u B Brrieoym
N k. Lm

— luN./\'luN. huN.m k' 1' m'
Unis Ao+ DL jURY
XI“' cakL A mln~~~h/.16{l|.-l--/11:h|~-b/m| c,In )m CLe gl - dj (2.36)

if I—kl<m<l+k and k+/4m is even, with i=(m+k—1)/2, j=
(m+1—k)2, h=(I+k—m)/2; in all other cases @y 2= Frn-m
vanishes. (Of course we are considering &k, /, m>0.)

In the following we will be interested in the scalar quantity

(g;’-\/:k, Lom— ON:ik.lLm '(gN: k.olom (237)

The general formula is reported in Appendix A.5 [see (A.63)]. A par-
ticularly simple case is m=1/+k:

(gzv ko tek =N, /+AM (2.38)
N I+ k

' In particular, for N=1 (the Ising model) we get F, ,=cosh J and F, ;=sinh J, and there-
fore the formulae in the following sections will be written in terms of the usual high-
temperature expansion parameter v, ; =F, |/F, y=tanh J.
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which can be obtained directly from (2.36), using the properties of the I,
tensor and (2.16). If k=1, this gives

N+l—2> (239)

(gi’:l./.lJrl:N( /

It follows immediately from (2.35)—(2.37) that €3, , ,, is symmetric in
the variables k, /, and m. This implies, for example, that

2 P el ik
(gl—V:k.l./—k=(giv;k./—k./='AfN‘IM—l‘ (2.40)

By

[from (2.38)]. It also implies that for & fixed it suffices to find €3, , ,, for
I<m<Il+k Thus, the two coefficients needed (for each /) for the case
k=1 are obtained from (2.39). For the ease k =2, which will be used later,
we have from (2.38) that

s _N(N+2)(N+l—1)<N+l—2
Cnirtie2= AN +20) / > (2.41)
and from (A.63) we obtain'’
, IN+2N=-2)XN+1-2)
Cnia1=Nw (242)

(N+2I)}(N+2/—4)

Using the completeness relation (2.20), formula (2.35), and (2.17), it is
easy to verify the identity

Z (gzN koom = "4/1‘\'. I'/‘/I‘V. m (243)

k=0

3. EXACT SOLUTION FOR A GENERIC h

3.1. Finite Volume

In this section we want to discuss the most general O(N)-invariant
o-model taking values in S ', with nearest-neighbor interactions, defined

"7 Formula (2.42) is potentially ambiguous if N+ 2/—4=0, which can happen for (N=2,
I=1) and (N=4, I=0). In fact, €%,,, , = M(N—1) and 63, , ,=0; these results can be
obtained by interpreting (2.42) as an analytic function of N for each fixed /.
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on a one-dimensional lattice with L sites and periodic boundary conditions.
We consider a Hamiltonian of the form

L—1

#({e}))=— Y his, 0., (3.1)
x=0

with ¢, = o,. Interesting special cases are the N-vector model
h(o. 6,)=J6, 0, (3.2)

and the RPY " model
J 2
h(c,\' : o-y) = 5 (0'_\. : 6)') (33)

The coefficients F, , have already been evaluated for both of these models
[see (2.32) and (2.33)].

We want to evaluate the following quantities:

« Partition function:

L—1
ZN(h,L)=J@0' l—[ elax oxs) (34)

=0

o Spin-k two-point function (k=1, 2,...):

1
Gy ilx, h; L) =T < Yy (60) Yy {60, (3.5)
Nk
Grup,h; L)=) e™Gy (x, h; L) (3.6)
=0

where 0 <x < L, and p is an integer multiple of 2z/L. Note that the nor-
malization ¥y, , [defined in (2.16)] ensures that G (0, h; L)=1."®
» Susceptibility ( =two-point function at zero momentum):

X/V.k(h;L)zéN.k(Oa h; L) (3.7)

¥ Since we are, using periodic boundary conditions, Gy {x,/1; L)=Gy (L —x, h; L) and
therefore Gy (p. h: L) is real. Indeed, Gy (p, h; L)>=0 for all p because Eq.(3.6) can be

written as
2>

by using translational invariance. On the other hand, Gy (x, /1; L) may in some cases be
negative (“antiferromagnetism”).

-1

Y ™Yy uloy)

x=0

=~ [
Gulps L)=z<
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» Two-point function at the smallest nonzero momentum:

G ilh; LYy=G)y, A( —, h; L) (3.8)

» Second-moment correlation length:

(Lxw, ;s LY/ Fy /\-(h;L)]_l)]/' .
. — if = Py
£k L) = 2 sin(n/L) AnaZ TNk 39y
undefined otherwise

In all of these formulae we have used the abbreviations

L—-1
Y6 = H dQ(e,) (3.10)
x=0
1
<f({o})>Lsmj.@cf({c})e—-’”(“*’ (3.11)

To compute all these quantities, we expand e~ ” in terms of the

hyperspherical harmonics Y, ,, as described in the previous section:

exp[/i(e,-6,)] = Z Fy i(h) Yy (6,)- Yu i(0,) (3.12)

k=0

The integration over P¢ is then immediate using the orthogonality rela-
tions (2.10) and the integral {2.35). In this way (using also the symmetry
of €%. , m in the indices / and m) we obtain

Zy(h; Ly =Fy o(h)" Y, Ny 10 (B)* (3.13)
=0
1 FN o(h)

Z (gzN k., Lom N m(h) UN I(h)L v (314)

n =0

Gy ilx, h; L)y=

Nk Zn(h; L) |,

1 Fyoh)* & R i
'/VN.k ZN(II,L) Z {(gNik,l,mvN,[(h)

Lm=0

GN. op,h Ly=

9N4 I(k)z_UN. ln(h)2 }
3 = 3.15
X o 1R —2(c0s p) v (1) ow ) Fom i) 1)
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where 0 < x < L —1; here we have defined the normalized expansion coef-
ficients
Fy i (h)

vy, 1(h) =m (3.16)

which will play a central role in the subsequent analysis.'® Notice that,
because of the properties of the coefficients F,, , discussed in Section 2, we
have |vy «(h)| <1 for all k#0.%° Moreover, all these series converge very
fast (at least if /4 is smooth): this is because, for k — co, vy (/) goes to zero
faster than any power of k, while A}, , ~k"™~2 and [see (2.43)]

(g}Zv: k, I, m S min('/‘/N, k‘/V‘N. i ‘/VN. k'/VN. m» '/VN. 111MN. I) (317)
Finally, using (2.43), it is trivial to check that G (0, A; L) =1 in (3.14).

3.2. Infinite Volume

We want now to consider the infinite-volume limit L — co in the expres-
sions from Section 3.1, keeping the parameters of 4 fixed. Since vy (h)] <1
for all k#0, vy (h)" goes to zero for L — oo unless k=0. Thus in
(3.13)—(3.15) only the term with /=0 survives in the infinite-volume limit.
Since Ciy. i o.m = OimN . x> We get the well-known results'?>- 3% 2!

Zy(h; LY=Fy o(h)" [1+ 0(e™")] (3.18)
G.ilx, iy L) = vy (MM [1+ O0(e™5)] (3.19)
1—vyi(h)?

G p h; L) = 2 [1+0(e™*5)] (3.20)

1 —2(cos p) vy, «(h) + oy (h

1 The summand in braces in (3.15) is potentially ambiguous in two cases: (i) p=0 and
Un.1=Unm: and (ii) p==z and vy ,= —vy,. In these cases the correct summand is
G« 1.mLtn, (h)E, as can be seen by going back to (3.14) and performing the sum over x.
[ The same result can be obtained formally by symmetrizing the summand in / and m (using
Cektom=C .. m.1h 1€, Teplacing v}, by (v}, ,—v5 Y2, and then treating vy, and vy ,,
as independent variables for which one can take the limit vy, = *vy,.]

2 For the RP~" model, or more generally if h(o, - ¢,) is an even function, all the coefficients
Fy (h) [and the corresponding vy ;(/1)] with [ odd are equal to zero (by symmetry). There-
fore, in the above formulas, only even values of / and /m can appear in the sums [except,
of course, in Gy 4(x,h: L) for x=0]. From this and the properties of the quantities
€3 .1.m» 1€, that they are nonzero only if k +/+m is even, it follows that for k odd the
spin-k two-point function vanishes for all x #0. Of course, this follows equivalently from
the Z,-gauge-invariance of the model when /4 is an even function.

2! The formulae in Section 3.1 are written for x > 0. By translation invariance, we obviously
have Gy i(x)= Gy (—x). Therefore, we can obtain formulae valid for all x by syste-
matically replacing x by |x|; we have done that here.
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where

4= —min log vy ,(h)] (3.21)
k#£0

In particular we obtain

14+vy (h)
(N 0) =7——— 3.22
XN,I\(h, w) l_vN‘k(h) ( )
and
vy b)) .

—_— if =0
EQrD(h; o) =4 1 —vy () ok (3.23)

undefined if oy,.<0

Let us notice that in infinite volume the correlation functions are
simple exponentials. In fact, if we define the masses my, (h) for k=1, 2,... by

—log vy ((h) for 0<vy <1
undefined for —1l<ovy,<0

my (h) ={ (3.24)

then, in the usual case® in which v, , >0, the correlation functions are
Gy o(x, h; 00)=e"nslxl (3.25)
We can also define the exponential correlation length by

. —|x| !
s oy 1 _ 326
SNk (h; 00) e log Gy {x, h; 00) my (h) (20

4. A ONE-PARAMETER FAMILY OF HAMILTONIANS

In this section we want to study the continuum limits and finite-size-
scaling functions in a one-parameter family of interactions of the form

ho-t)=Jh(c+1) (4.1)

where / is some fixed function. Therefore, F ~.k» Un. ik, and all the quantities
introduced in the previous sections are now functions of J. As 7 is
arbitrary, it suffices to consider the case J>0 only. Since we are in one
dimension, there are no critical points at finite J; the only way of obtaining

2 As we will see in Section 4.1, the case of negative v, , does not give rise to a valid con-
tinuum limit
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a continuum limit is to take J— 4-co. We will do this by obtaining an
asymptotic expansion of the coefficients F, ,(J) for large J. Using the
general formula (2.27) with f(t)=exp[.l71'(t)], the problem reduces to
expanding the integrand around the absolute maxima of (1) in the interval
[-1,1]

In Section 4.1 we will study the continuum limit in infinite volume. In
Sections 4.2 and 4.3 we will study the finite-size-scaling limit and the
corrections to it.

The discussion in Section 4.1 of the possible continuum limits will be
restricted to the case N >3, since N=2 displays different properties
[related to the different topological structures of the sphere for N >3 and
N =2, and to the fact that the only nontrivial normal subgroup of O(N) for
N>3is { +1}, while for N=2 there are many others].”* Although for
N=2 the analysis of possible continuum limits is not complete, it is
nevertheless valid for the limits included, and so are the finite-size-scaling
functions and their corrections.?*

4.1. Continuum Limits and Universality Classes for N>3

4.1.1. Generalities on Continuum Limits. Consider a sequence
{->'" of infinite-volume lattice models. A continuum limit is defined by
choosing length rescaling factors ="’ — co and field-strength rescaling
factors £, such that the limits®

Gior (%) = lim {5, G(5%) (42)
Gq}so:t)(l—,) = lim C(I\,;,)kE(")_(IG(]G.’I((E‘")_lﬁ) (4'3)

n— oo

exist (in the sense of distributions), where d is the spatial dimension. (For
simplicity we are considering only the two-point correlation functions.) In
other words, a continuum distance of X centimeters corresponds to
x= 5% lattice spacings; and conversely, one lattice spacing corresponds
to "' centimeters, which tends to zero in the limit.

In our case of a d=1 nearest-neighbor model, the correlation func-
tions are pure exponentials [see (3.19)]; the only parameter is the mass

* In particular, the discussion following (4.36) does not apply for N =2.

% The case N=1 is even more trivial, as the only possible function 7 is 7(s)=1.
2 We use the Fourier-transform convention

Gipn)= [ ' ot
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parameter v\, . It is easiest to work in p-space: for any fixed continuum
_° . — -1

momentum p, the lattice momentum p=ZE""" p tends to zero as n — o, so

we can approximate

cos pr1—p*2=1-E""p*]2 (44)
Thus, the denominator in (3.20) is
(1 v(}(}) )2 (n) -p-ZU(nl (45)

(Note that 272 - 0.)

Now COIlSldel‘ a ratio of the correlation function for two different
values g, p'. If 1 —oY}’, does not go to zero as n— oo at least as fast as
E(71 then the ratio G (5')/Gr(p) is 1, ie, G$°r(p) is independ-
ent of p. This is a physically trivial theory (wh1te noise). On the other hand,
if 1 —u‘,(,"k goes to zero faster than 7', then the limit (if any) will be
const/p?, ie., a massless free field, which 1s ill-defined in dimension d=1.
Therefore, a sensible continuum limit can be obtained only when the
product (1—v%’,) " tends to a nonzero finite constant (which is of
course k-dependent); and this limiting constant is in fact the mass m{;°"
of the theory. Moreover, in dimension d=1 it easily follows from (3 19)
that {%, should likewise tend to a nonzero finite (k-dependent) constant
{5rY; the continuum correlation function is then a massive free field

J(conl)
( ) N k
G conl (p) p— —2 + (m—(con[))_ (4.6)
with mass
mEort = lim EWm), = lim Z(1—0Y),) 4.7)
and field-strength normalization
Qﬂ(com) — zc(conl)’nlconl) (4 8)
Nk = N. k N. k "
Going back to x-space, we have
GRov(xX) = 5o exp[ —m§oet | %] ] (4.9)

In summary, continuum limits can be obtained from sequences of
lattice theories in which v, -1 (ie, m{’, »0), and only from such
sequences. In particular, continuum limits in this sense cannot be obtained
from sequences of theories in which v%’, - —1, ie., antiferromagnetic
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models with slow decay of correlations. As can be seen from (4.9), a con-
tinuum limit is uniquely defined by the limiting masses m{{°"’ and the
limiting normalizations {°"). Moreover, we shall consider two continuum
theories which differ only by rescalings of X and the field strengths to be
essentially identical. We therefore label the different universality classes by
the limiting mass ratios, defined as®®

(conl) {(n)
my m
. N, 2
'@N_k =m lim ) (410)
mN_,\ "n— o mN &

In the case at hand [Hamiltonians of the family (4.1)], we are con-
sidering a sequence of theories h=Jh parametrized by J (which plays the
role of n). As already mentioned, the only possibility for having v, (J) — 1
is to let J— + 0. In the next subsection we will perform an asymptotic
expansion of v, ,(J) for large J, and we will typically find a behavior of the
form?’

vy () =1—=ay , A(J) + 0(A(J)) (4.11)

where the mass scale 4A(J) and the coefficients 4, , will be computed in
each case.” In this situation, Z(J) should clearly be taken to be propor-
tional to A(J) ™', and the continuum masses will be

iR = ay . lim A(J) 5(J) (4.12)

J—

Remarks. 1. For some choices of 7 we will find that the mass
parameters vy ,(J) behave differently according to whether k is even or
odd. In such a case we shall take A(J) to be of the order of the smallest
mass in the theory—which, it turns out, is always in the even sector—and
we shall write (4.11) only for k even. We shall then take =(J) proportional
to A(J) ™' and obtain a good continuum limit in the even sector. Of course,
in the odd sector we have simply white noise (my°r"’ = + o).

2. Although the two-point correlation function is that of a free field,
the theory is definitely not Gaussian (neither on the lattice nor in the con-
tinuum limit): the higher-point cumulants do not vanish. See ref. 39 for a

** We choose 1y » in the numerator for reasons that will become clear later.

*7In Section 4.3 we will assume an expansion to the next order [see (4.88)], which will be
used to compute the corrections to finite-size scaling. In Section 4.1.2 we will explicitly com-
pute such an expansion for two simple Hamiltonians (the firsr case and those belonging to
the second case with Jr even): see (4.14) T,

2 Obviously there is some arbitrariness in the definition of A(J): if 4(J) is a function satisfying
C=lim,_. ,, A(J)/A(J)with 0 < C < co, then the pair A(J), @y = Cé v« is just as good as the
pair A(J), dy. ;.

822,86/3-4-10
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calculation of the dimensionless renormalized four-point coupling constant
gr for the general Hamiltonian (3.1). In the continuum limit g, tends to a
nonzero value that depends only on the mass ratio m'y°" /m'Sor.

4.1.2. Two Simple Cases; N-Vector and RP" " Universality
Classes. Before considering the general case of one-parameter
Hamiltonians, let us discuss two simple cases of Hamiltonians which
generalize, respectively, the N-vector model and the RPY ' model:

First Simple Case. t= +1 is the only absolute maximum of h(1), and
h(1)>0. (This is a subset of what will later be called the Hamiltonians of
type 1)

Starting from (2.27), we first expand the integrand around ¢ =1 using
the relation

CN2=Y(1) N—11—¢
NI = 2 k=2, —ki——;—— .
cY) _F,<N+ 2, —k;— 5 > (4.13)

where ,F\(q, b; c; z) is the hypergeometric function (ref. 37, formulas 9.100
and 9.14.2). Then, extending the integration in ¢ from [—1,1] to
[ — 0, 1], we obtain the asymptotic expansion

FuslD)=fol)| 1= 224 2551 07 )| (4.14)
with
e.lTl(l) N JZ'(I))'N’/Z
N=———TI= 415
I [2nJ7(1)]'2 <2>< 2 (1)
1 1 N—1
aN'k=T(1)|:AN'k+Z(N—l)(N_3)_ 4 r] (416)
_ 1 {(N+2k+1)(N+2k—1)(N+2k—3)(N+2k—5)
Nk 87(1)? 16
_(N+2K 1N+ 2K =N+ 3N +1)
8
(N+5)(N+3)N+1)(N—1) ,
* 16 a

(4.17)

(N+3)}N+I1}N-1) }
- - 5
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where 1, , (=0) are the eigenvalues of the Laplace—Beltrami operator on
the sphere [given in (2.1)], and we have defined

=Rh"(1)/i(1) (4.18a)
R"(1)/h'(1) (4.18b)

r
N

For the normalized expansion coefficients v, ,{J) we therefore have

Ay g 4 by k

o) =1——= = o) 4.19)
Nk W1y T AR(1)2T2 ( (
where
Ay i =Ani (4.20)
by e=dns a;"‘—(NH)r—l] (4.21)

The N-vector model corresponds to E(l)=7z"(1)= 1, r=5=0. Notice that
in this case formulae (4.14)-(4.17) could alternatively have been found
through a direct expansion of the Bessel functions in (2.32).

Thus, for J— + oo all masses [see (3.24)] go to zero as

My (J) = Ay A(JT) (4.22)

where A(J)=1/[2JA'(1)] is a nonuniversal scale factor that goes to zero
for /— + co. (Here =~ means that the ratio of the left and right sides tends
to 1 as J— +0c0.) If we consider the mass ratios defined by

my 5(J)
Ry (J)=— 4.23
) = (423)
we obtain, in the continuum limit,
An.a
Ry = N2 (4.24)
A‘N.k

Therefore, all these Hamiltonians give rise to the same continuum limit and
belong to what we will call the N-vector universality class.

Sec~ond Simple Case. t= t1 are the only absolute maxima of h(1)
[hence A(1)=h(—1)], and A'(1) >0, A'(—1) <O0. (This is a subset of what
will later be called the Hamiltonians of type I1.)

* We use my,_, rather than m, , in the numerator in order to facilitate comparison with the
second simple case below, in which my = + w0 for all odd k.
Nk
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In this case one must sum the contributions of the two maxima, that
is, Fy ((J)=Fg5 (J)+F5 (J). The contribution Fy , coming from t=1
has already been computed. Using the fact that C}?~'(—1)=
(—1)*CY*~ (1), we see that the contribution Fy , coming from r= —1
can be obtained from Fj, by replacing the derivatives 7’(1) with
(—=1)"h"(~1) and then multiplying the whole thing by (—1)*. Thus,
keeping only the leading terms, we get

iNJ\./?'(l)—(Awn/z_*_ (= 1)~ + D

i % +0(J7%) (425
2J hl(l)(l —N)/2+ Ih/(_l)l(l_N)/z ( ) ( )

vy () =1

for k even, and

Er(l)(l~N)/2_ |';:l'l( _l)l(l — N2

E'(l)n—/\')/z_*_,,*1,(_1”“_,\,)/3 oJ Y (4.26)

Un. /\(J) =

for k odd.

From these formulae we immediately see that lim,_, , , [v,{J)] <1 for
k odd, so that the odd-spin sector of the theory remains noncritical even
at J= +co. [In the special case where the function 7 is even™ (as in, e.g.,
the RPY~"' model), we have in fact vy (J) =0 for k odd, for all J; while
for k even we get the same v, ,(J) as in the first simple case, given by
Egs. (4.19)-(4.21).] On the other hand, the even-spin masses go to zero as

my  (J)= Ay AT for k even (4.27)
where again

_l}‘i:(l)—(:\f—bl)/z_}_IE:(_I)I—(N+IJ/Z
2 71'(1)“_'\’)/24'|/~1'(—1)|“~N’/2

A(J) (4.28)

is a nonuniversal scale factor that goes to zero for J— + co. Thus the
limiting mass ratio #,, , in this case is the same as in the N-vector univer-
sality class for even k and is zero for odd k. That is,

An 2/ & for k even

A= {0 for k odd (4.29)

*In this case we have Fy (J)=0 for k odd. For k even we have Fy (J)=2F} ,(J), and
therefore the coefficients «, ; and b, , are given by (4.16) and (4.17), and f(J) has twice
the value in (4.15). For r=1 and s=0 we obtain the expansion for the RP¥~! model,
which can also be obtained by direct expansion of the coeflicients {2.33).
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All these Hamiltonians belong to the same universality class, which we will
call the RP" ~! universality class. Notice that the exact Z, gauge symmetry,
which holds for the usual RPV~' Hamiltonian (and more generally when-
ever h is even), plays here no role. Provided that the Hamiltonian has a
two-maximum structure at t= +1 with Z'(il)#O, the continuum limit
will be Z,-gauge-symmetric. For instance, a Hamiltonian with A(z)=
> +a(t—t3), with |x| <1, belongs to this universality class.
In summary, we have thus far defined two universality classes:

(1) The N-vector universality class, where all the masses go to zero
as J— + oo at the same rate and the limiting mass ratio %, , is given by
(4.24) for all k.

(i) The RP™~' universality class, where as J — + co the even sector
displays the same behavior as for the N-vector universality class [i.e., the
masses go to zero at the same rate with %, , given by (4.24) for all even
values of k], while in the odd sector the masses either (a) do not go to zero
{as in the second simple case above) or else (b) go to zero at a rate slower
than for the even sector (as will occur in some examples below), and there-
fore #, . is zero for all odd values of .

Formulae (4.22) and (4.27) had to be expected on general grounds.
Indeed, the continuum limit of the N-vector model (or more generally of
any model belonging to the first simple case above) is simply Brownian
motion on SY~', and the generator of Brownian motion is the
Laplace-Beltrami operator.®’ Thus we expect my (J)~ A(J)Ay ., Where
A(J) is a nonuniversal scale factor depending on the chosen sequence of
lattice Hamiltonians. An analogous discussion applies to the RPY ! case:
here the continuum limit is Brownian motion on RPY~! and thus the
corresponding masses are related to the eigenvalues of the Laplace-
Beltrami operator on RPY ~' (which are simply the even-spin eigenvalues
of the Laplace-Beltrami operator on S¥~').

4.1.3. General One-Parameter Family. We want now to
address the general problem of studying the limit J — + oo for an arbitrary
interaction %; in particular, we want to know whether the two universality
classes we have just discussed are the only ones which can appear as a
critical limit -of interactions of the form (4.1). As we shall see, the situation
is much more complicated than this, and in fact an infinite number of
universality classes appears.

* An arbitrary second-order elliptic differential operator on a manifold M generates a diffu-
sion process on M; Brownian motion is the special case in which the generator is the
Laplace-Beltrami operator. For the general theory of diffusions on a manifold, see, e.g.,
ref. 40, Sections 4.1-4.3.
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Let us assume henceforth that % is smooth, and that it has finitely
many absolute maxima, all of finite order. In particular, suppose it has M
absolute maxima on the interval [ —1,1] at points ¢,,..,,, with
h(t)=--- =h(ts)=h,... Let n, be the order of the maximum at t;, 1e.,
the smallest (nonzero) integer such that #(t,) #0. [When t,# +1 the
order n, is of course even and >2, and #(z,} <0. When f,= — 1 we have
h(1,) <0, and when t,= +1 we have (—1)"h"(1,)<0.] For J > + o0 we
have

M
Fyi~ Y F, (4.30)

i=1

where F{', is the contribution of the ith maximum; to leading order in J
it is given by

Cc2- ()
C;:’/2~ I(l)

F(I\IIT v ~ ejl' m;L\Ai

J (4.31)
where

1:{(N—1)/(2n,-) if ¢,=x1 (432)

1/n, if 7% +1

and A4, is a positive constant, independent of J and k, given explicitly by

I/7""'(r,-)|>"' nN2) M) -
— AA '
g < n! I(N-1)2) n, 7 (4.33)
where
- N =3)2 it f= 41
i={2(1—t?)‘”"3’/2 if £,# +1 (4.34)

For J— 4+ oo the leading contribution comes from those terms with
the smallest «;; we call these maxima the principal maxima. Setting
o =min,; «;, we thus have
Cee™ (1)

~ Iy J—2
Fyxelmj=—* ¥ 4,

iraj=a

We want now to know under what conditions the mass m, ,(J} tends to
zero as J — 4 oo. For this analysis it is sufficient to use the leading-order
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expansion (4.35). Equivalently we want to see under what conditions
va «(J) = 1, ie., when [notice that C}>~'(¢)=1 and 4,>0]

N/2—1

T4 ((’;N/,_ l(’ T4 (4.36)
Since (see Appendix A4) for N=3, |CY* ()| < CY?~ Y1) when 1# +1,
this condition cannot be satisfied for any k if there is in the sum an 7/ such
that ¢, # +1. Thus the principal maxima can only be at 1 or —1.
Moreover, if t = — 1 appears in the sum, the condition can be satisfied only
for even k, since Cy2~Y(—1)=(=1)*CY?~'(1). We end up with the
following results:

1. If ;=1 is the only principal maximum of %(t), then

Jo 4o
for all k> 1. In this case all correlations become critical.

2. If t,;= +1 are the only principal maxima of /(t), then

1 for k even

¢y for kodd (4.38)

lim oy, () ={

S+

with —1 <c¢u , < 1. In this case only the even-spin sector becomes critical.
In detail, we have

_ IR = (= 1)

Cn k== — (4.39)
B R 4 R (— 1)
where n=(N—1)/2a.
3. If t,= —1 is the only principal maximum of /(r), then
1 for k even
i (J)= 4.4
,m v il) {—1 for k odd (4.40)

As in the preceding case, only the even-spin sector becomes critical.

4. If there exists at least one t; # +1 such that «,=« (ie., there are
principal maxima other than +1), then

lim vy (J)=Chs (441)

S 4>
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with —1 <y . <1 for all k. In this case there is no continuum limit for
any k. In particular, if there is exactly one principal maximum and this is
a point t; # + 1, then

CNP= (1,
c'N.x-=C§,,Z—_IEI; (4.42)
These results can be understood heuristically: If some ¢, # +1 con-
tributes at leading order to the asymptotic expansion of F, , (case 4), then
for large J the typical configurations have ¢.-6,.,, ¢, on a significant
fraction of the bonds. For N> 3 there are many configurations on each
bond with this property (since the azimuthal angles are undetermined), and
they keep the system disordered even at J= + 0. In case 1, by contrast,
the system orders and thus for J= + oo the correlation length becomes
infinite. In case 2 the system orders modulo a sign; the even-spin correla-
tions are insensitive to the sign and thus display critical behavior, while the
odd-spin ones remain disordered even at J= + c0. In case 3, the system
develops antiferromagnetic order at J = + oo; the even-spin correlations are
insensitive to the sign and thus display critical behavior, while the odd-spin
correlations have no continuum limit.*? In the following we will disregard
the theories belonging to case 3 [since for the odd-spin sector they do not
have a continuum limit, and for the even-spin sector they are identical to
theories of case 1 with A(z) — J( —1)] and to case 4 (since we have proven
that they do mnot exhibit any nontrivial critical behavior). The
Hamiltonians described in case 1 (respectively case 2) will be called
Hamiltonians of type I (respectively type IT).

To characterize the different universality classes, we want now to
derive the behavior of the masses m, , in the limit J— +co. In order
to do this, we must carry the asymptotic expansion of Fy ,(J) to the first
subleading order for the principal maxima, and also consider the leading
contributions from the nonprincipal maxima. Let us first consider

*The antiferromagnetic case 3 can be transformed into the ferromagnetic case 1 by the

change of variables ¢ =(—1)"e, together with ﬁ‘_(t):ﬁ( —1). The correlation functions
then transform as Gy (x, 7" o0)=(—=1)** Gy ((x, ; o) and
- Guilp o) for k even
G Ap,h" )= -A'A -~
nl P T )= pem i) for k odd

Thus, case 3 is identical to case 1 for the even-spin correlation functions; and it has no con-
tinuum limit for the odd-spin correlation functions (since there is no divergence at p =0).
This mapping also works in finite volume, provided that L is even.
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theories of type I. The relevant expansion for F , is (we set 1, =t,=1)

FN .Illmn {A J- l: C}_[j{' + (J l/n+):|
M CNp_]({ .
+ Z ey CN/7—|(1){J_a'+0(J_m')]} {443)

where

(4.44)

c, =

1 I((N+1)2n, { n,! ]‘/"+
N—-1 F( N—=1)2n,) [ |h"+ (1)
N?__l E(Il++|)(1)

1
Ay S (N—HN—1)— '
dA.+ AAA+4(N 3N ) 2]1+(n++1) Z(H—}-)(l) (445)

{Note that ¢, does not depend on k, while d, . does.) The first correction
to the leading term depends now on the relation between « and
f=min, o, ;. We have

My (J) = AJT) Ay +o0(J ")

1 cyR-() .
s LAl NG AL
itmj=f} k
with
AJ)y=c, J '+ (447)

(We call the maxima with «,=f the next-to-principal maxima.) Here it
should be understood that only the dominant term is to be kept:

(a) If §>a+1/n,, the first term is dominant and the model belongs
to the N-vector universality class (4.22).

(b) If f<a+1/n_, then the third term (the term of order 1/J#~%)
dominates provided that its coefficient is not zero. The coefficient is zero if
k is even and the only next-to-principal maximum is ¢;= —1; otherwise the
coeflicient is nonzero. Thus, for k odd the mass is

1 CNP= Yt
monsg=m LGy e
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(bl) If the coefficient (for all k) is nonzero, the limiting mass ratio
(for any k) is
SiimapAi(1—=CYP1(1)/CYP Y1)
Zi:cq=/!Ai(l - CI}\-V/Z_ I(ti)/C;\-V/z_ l(l))

Ry = (4.49)

Clearly there is a multiparameter family of new universality classes,
obtainable by varying the {t,, 4,} /., appropriately.

(b2) If the coefficient (for k even) is zero, the behavior depends on
whether the correction o(J ~'#~%) is larger or smaller than J ="+ If it is
smaller, then (for k even) the term A(J)A, , will dominate and therefore
the ratios %y , will be those of the RPV~! universality class.®® If the
o(J ~'#==)) correction is larger than or equal to J~'/'+, then a more
detailed investigation is needed. (We note that, also in this last case, the
limiting mass ratio is zero for k odd just as for the RPY~' universality
class.)

{c} Finally, if f=a+ 1/n,, then both terms are of the same order.
Again we obtain new (multiparameter) universality classes. In particular, if

the only next-to-principal maximum is f,= —1, we get
An.2/AN i for k even
INk=5 "0 4.
i {'{N.Z/()'N_k + B) for k odd (4.50)

where 0 < B< oo is a parameter that interpolates the limiting mass ratio
between the N-vector and the RP™~' universality classes. [ Explicitly:
B=24;/(c, 4,).]

For theories of type Il wesett, =¢,=1and t_ =t,= —1; the expan-
sion of F, , is then given by

c,.d, ! a c_d, _
Fr i~ Jllmx{A J- <1_ +Jl/f,'+>+(—1)"A_J (1— J[/f,'>

a—1/n CN/Z—I(I —a, e
+o(J~ )+2A,C—N/—2——[J i+o(J ')]} (4.51)

where n=n, =n_=(N—1)/2a; here d, , and c_, are given by formulae

(4.45) and (4.44), and d, _ and ¢_ can be obtained from the same
formulae by simply substituting A'(1) with (—1)"h(—1). Defining

¥ See case (b) of the definition of the RP¥~" universality class in Section 4.1.2.
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f=min; ., ., o, we obtain that for even values of k the masses are given
by Eq. (4.46) with 4, replaced by 4, + 4 _ and

A,c, +A_c_
A== _"—"—g-» 4.52
& A, +A4_ ( )

(as before, only the dominant term should be kept), while for odd values
of k we have

. A, —A_
~1< lim vy (J)="F—"=H

1 4.53
J— oo A++A_< ( )

Therefore the odd-spin sector of the theory is always noncritical, while the
even-spin masses go to zero at the same rate for all even k. It follows that
the mass ratios Z,_, =my »/my . are zero for odd k and nonzero for even
k. If B>a+ 1/n, we reobtain the RPY~"' universality class (4.27), while in
the other cases an infinite number of new universality classes appear.

4.1.4. An Example in More Detail. Finally, to examine more
closely the possible universality classes, let us consider the special case in
which there are only two possible maxima, namely those at t+= +1. This
generalizes the two cases studied in Section 4.1.2: in that section we
required #'(+1) #0 (ie., n, =1), while now we lift this restriction. Let n
and n_ be the orders of the first non-vanishing derivatives at = +1 and
t= —1, respectively; we will suppose n, =n_ (since we are considering
only theories of types I and II). Then, from the previous discussion we find
four cases:

For Hamiltonians of type I, namely n_ <n_, formula (4.46) becomes

Codme [1=(—=1)14_

my ()= e TP, (4.54)
with a=a, and f=a_.
There are therefore three possibilities:
(a) Ifn_<[(N—1)/(N+1)]n,, we get
' My (D) % Ay (4.55)
for all k, with A(J) given by
AJy=c J '+ (4.56)

Therefore, the model belongs to the N-vector universality class.
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(b) fn,>n_>[(N=1)/(N+1)]n_, we then have

A() A for k even

A04_j4)J ¥ for k& odd (457)

my () = {
with A(J) given by (4.56). Therefore all masses go to zero as J — + oo, but
with different rates, so that in the limit the odd-spin masses are infinitely
larger than the even-spin masses. The limiting mass ratios %, , are those
of the RPY~" universality class.

(c) Ifn_=[(N=1)(N+1)]n,, both terms in (4.54) contribute at
the same order. We obtain

N{A(J) Ank for k even (458)
TNEEY AT Ay o+ B)  for k odd ‘
where A(J) is given by (4.56) and
24
= = 4.
B AL (4.59)

is a positive constant. So we get an infinite number of different continuum-
limit theories, parametrized by B. Notice that 0 < B < ¢o; therefore, the
N-vector and the RP" ~! universality classes are not included as particular
cases, but only as the limiting cases for B— 0 and B— + oo, respectively.

For Hamiltonians of type I, namely n_ =n_, we have:
(d) The masses are given by Eq. (4.53) for k odd and by

my = ANy i (4.60)

for k even, where A(J) is as in (4.52). This case clearly belongs to the
RPN~ universality class.

4.1.5. Interpretation. We want now to interpret these results in
another framework. In one dimension a continuum field theory is simply a
continuous-time Markov process on the target manifold. Now, the gener-
ator of a continuous-time Markov process is the convex combination of a
diffusion part (a second-order elliptic differential operator) and a jump part
(a positive kernel) (ref. 41, Example 1.2.1, p. 6; Theorem 2.2.1, p. 48;
Theorem 2.2.2, p. 51). Physically, this means that the “particle” diffuses
for a while according to the specified differential operator, and then, at
exponentially distributed random times, jumps according to the specified
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probability kernel. On the sphere S¥~!' for N>3, the only SO(N)-
invariant second-order elliptic operator is the Laplace—Beltrami operator
(and multiples thereof); thus, the only SO(N)-invariant diffusion on SV~
is standard Brownian motion (with an arbitrary coefficient, corresponding
to a rescaling of time).* On the other hand, there is an infinite-dimensional
family of possible SO(N)-invariant jump kernels X: indeed, one can specify
an arbitrary probability distribution of jump angles §e€ [0, z] [and SO(N)
invariance then determines K uniquely for N>3]. Each one of these
quantum Hamiltonians A =a.% + K (a >0) defines a legitimate continuum
o-model.

Moreover, for each such quantum Hamiltonian A and each t> 0, the
integral kernel exp(—tH)(o, ¢') is a smooth O(N)-invariant function of ¢
and ¢’ (and thus a function of ¢-¢’); it can therefore be realized as
exp[7/(c-6")] for a suitable smooth potential #;. Thus, by taking some
sequence t |0, we see that each continuum o-model can be realized as a
continuum limit of lattice g-models [ie., discrete-time O(N)-invariant
random walks on S”~'], each of which has a smooth step distribution
exp[7(6-6")].

We can now interpret formula (4.46): the continuum limit of this
theory is a Markov process on S~ ' which contains a jump part with
jump angles 8, = arccos ¢;. The coefficients A; are related to the probability
distribution of the jump angles. The typical configuration here, for large J,
consists of ordered domains where 6, *¢,,, ~1 separated by links where
a jump occurs, that is, where ¢, -6, , ~1,. Notice that these jumps must
be sufficiently rare, otherwise they destroy the order and thus no criticality
appears (this occurs in case 4 of our classification, i.e., when «; =), but
not too rare, otherwise they are unable to change the critical behavior of
the system (this is the case when «;> f). Jumps of = (which are simply spin
flips) play a special role: the spin-k correlations for k ever are insensitive
to spin flips, and thus they remain critical irrespective of the frequency of
such flips. In particular, for theories of type II these spin flips are infinitely
rapid, and the continuum limit is best considered as a Markov process on
RPN '=8N-Y7Z,.

4.2, Finite-Size-Scaling Limit

4.2.1. Generalities on the Finite-Size-Scaling Limit. We
want now to discuss the finite-size-scaling limit for theories of types I and
IT {see Section 4.1.3 for definitions). This limit is given by L —» o0, J - +
[hence &4F)NJ; o) — oo, where £4F) denotes any one of the correlation

* This is true also for N =2 if one demands O(N) invariance and not just SO(N) invariance.
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lengths &% or £'5*P? introduced earlier] in such a way that 47 )(J; 0)/L
remains fixed.*> We therefore define the scaling variables

xPUJ; 0)

Z, = i L
«=2zi(J; L) I

il

(4.61)

When considering correlation functions in x space we also scale x, i.e., we
will consider x =xL with 0<xX<1 fixed. the corresponding correlations
represent the correlations of a continuum theory in a periodic box of
width 1.

Everywhere in this section, for theories of type II or those theories of
type I belonging to the RPY~' universality class [see case I(b2) in
Section 4.1.3 and case (b) in Section 4.1.4%¢] k must of course be even, and
in all the formulae below only even values of / and m are to be included
in the sums.

As we have seen in Section 4.1.1, the theory displays critical behavior
only if the masses m, , go to zero in the limit J — + co. Therefore, in this
section we assume that

v {Jy=1—ay A(J)+o(A(J)) (4.62)

where A(J) is a nonuniversal scale factor (assumed strictly positive) which
goes to zero as J— + oo. The quantities d, , characterize the universality
class of the theory and are completely defined modulo an overall constant
which can be absorbed into A(J). Since vy (J) <1, we have d5 ,>0. For
the N-vector universality class, the coefficient &, , can be simply defined by

51\{[\.:1,\/‘/‘, (463)

where 1, , are the eigenvalues of the Laplace-Beltrami operator on the
sphere. For the RP" ~! universality class the same holds for even k. For the

* Similarly to what we did in Section 4.1.1, we could consider a sequence <> of finite-
volume lattice models with linear lattice sizes L' — o0, A finite-size-scaling limit { = finite-
volume continuum limit) yielding a continuum box of side L™ (0 < L™ <o) is
defined by rescaling lengths by factors Z'") = L'"/L!*™" ( - o) and rescaling field strengths
by factors {Y’, such that the spin-k two-point functions have well-defined limits. Without
loss of generality we can set L™ =1,

* In these two cases, the masses of the even and odd sectors go to zero with different rates.
As explained in the remark at the end of Section 4.1.1, A(J) is chosen to be of the order
of the smallest mass of the theory (that of the even sector) and it can be seen that for &
odd, vy (/)" goes to zero exponentially in the finite-size-scaling limit. Therefore, the odd
sector does not contribute to the finite-size-scaling functions, just as for case (4) of the
RPN~ universality class.
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other universality classes, which include jump processes, the coefficients
dy . can be easily derived from (4.43) for theories of type I and its
analogue (4.51) for theories of type 11

Now, from (4.61)—(4.62) and (3.24)/(3.26), it follows that for large J
we have

2, = ldy  LAJ)] (4.64)

Therefore, instead of considering the limit L, J— oo at z, fixed, we will
equivalently consider the more convenient limit at LA(J) =y fixed, since
the parameter y will appear naturally in our formulae. Let us then define
the variables

1 1
Z,=2 L)= 4.
=D = T TA0) "y (4.65)

(To leading order®” we have z, ~ Z,. The distinction between z, and z, will
become relevant only when we consider corrections to finite-size scaling.)
Our approach will be to compute various quantities as a function of y, and
then use (4.65) to reexpress everything as a function of Z, or Z,. The reason
for this last step is that functions of y are universal only modulo a scale
factor [corresponding to the arbitrariness of A(J)], while functions of
physical continuum quantities (such as the Z,) are universal fout court.

4.2.2. Computation of the Finite-Size-Scaling Functions.
We want to compute the following finite-size-scaling functions:*®

ZW(y)= lim  Zy(J; LY/Fy (D" (4.66)
L timed”
GRMEy)= lim Gy (5L ;L) (4.67)
Vixed
. {J; L
AW(r)= lim X———”“(L ) (4.68)
;'ﬁxch
n . é""‘”(] L)
= im SEED )
y fixed
3 More precisely we have
=k(J L)

lim = = lim &¥Pay AN =1
b v ALY J—»+xg waAl

* The superscript ‘” indicates “leading order.” The first corrections to these finite-size-scaling
functions will be computed in Section 4.3.
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Concerning yy . and &%, it is often convenient to look at the ratios
Xvi(J;3 L)
R v {J;Ly=2——"— (4.70)
e Xn. il )
é(Van:J)(J; L)
R yil; Ly=25-"—"—- 471
S.NAA( ) 6(1\7“;(”(']’ w) ( )
Note that by (3.22)/(3.23) we have
(J; 0) = 2 =2LZ (4.72)
SR VT |
1
(e J; AT o) ————= L3, (4.73
G o) RERD S o) m = = L2 )
Hence the ratios have well-behaved finite-size-scaling limits:
Rvilp)= m Ry ulJsL)=3n0xWl2) (4.74)
¥ (“(«.c‘l
RO, ()= 11m Ry (I L)y =ay &I y) (4.75)
)1md

The computation of the finite-size-scaling functions (4.66)—(4.69) is
straightforward. In the limit L, J — oo with y fixed, we have

vy () E=vp ()7 zexp {Wlog[l NAA(J)]}
xexp(—ydy ;) (4.76)

Inserting this limit in the exact expressions (3.13)—(3.15) from Section 3.1,
we obtain

A

ZW(G)= Y Ny e -
=0
1 * (gz ) —
GW(% 7)== Nk lmt = yin i =S A W,
" Z(}\(I))()’) Lm=0 '/VN.A-
2 < (gl e~ yan. 1
N = Nik lm 47
Xni(?) }va)(),) imes Mk Anim (4.79)
5(7“‘”(0)(})) {Zl m=0 [BN LA lu(y}/AN 1, I”]}UQ (4 80)
14 ZI. m=Q BN:/\'. /. m(y)
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with>®

AN: A mEdN. m_aN.l (481)

2 —yay Y A ; .1;1
By in?)=Cn.i1me ”m (4.82)

Let us notice that (4.77) can be rewritten as
Z'9(y) =Tr exp(—yH) (4.83)

where H is the operator that generates the continuous-time Markov process
corresponding to that universality class. For type-I theories (except the case
belonging to the RPY ™' universality class), the trace is taken in the space
L*(S™~'); while for type-II theories (and for the case of type I which falls in
the RP~' universality class), the trace is taken in the space L*(RP¥™'),
which is isomorphic to LSV ") wen= D 7 0. & even En.x and consists of the
even functions on S~ '. Physically, (4.83) expresses the fact that the finite-size-
scaling limit corresponds to the continuum theory in a finite periodic box.

Notice that since the coefficients d, , are uniquely defined by the
universality class of the theory, modulo a k-independent rescaling { which
depends on the explicit definition of the scaling factor A(J), but does not
affect the products d, ,y], these finite-size-scaling functions are universal
modulo a rescaling of 7.

4.2.3. An Interesting Family of Universality Classes. Let us
examine in more detail the finite-size-scaling curves for R,. 5 ,(J; L). In
particular, we want to study their dependence on the different universality
classes described in Section 4.1. As can be seen from the explicit expression
of R, (), the finite-size-scaling curve is determined completely by
{an, ,f. Therefore, we consider a family of universality classes parametrized
by a continuous variable B, with 4, , given by

. {AN., for [even (4584)

NZV0,+B for lodd

¥ As mentioned in footnote 19, expression (3.15) for y , requires some exegesis whenever
Un.;=Uy i and correspondingly (4.79)/(4.80) require exegesis whenever dy ;=dy ,,. In
such cases the combination [exp(—7ydy.;)1/4~.. m. Which occurs in (4.79) and in the
numerator of (4.80), should be interpreted as 3y exp(—ydy, ). This can be seen by going
back to (3.14); it can also be obtained by the “quick-and-dirty” method of symmetrizing in
I and m, treating the dy , as if they were independent variables, and using I'Hopital’s rule.
Note that in the N-vector and RPY~! universality classes this problem occurs only when
=m (and hence & is even). However, in the more general case (4.84), for certain values of
B one may have dy ;=dy., for I#m (but only where /—m and k are odd).

822/86/3-4-11
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[ This family of universality classes was found in part (c) of the example in
Section 4.1.4 and will be also found for the two-parameter Hamiltonians
treated in Section 5.] We can get the N-vector universality class by
choosing B=0, and the RP"~' universality class by taking the limit
B— .

Let us first look at the isovector sector {k=1). In Fig. 1 we plot
R{% () for various values of the parameter B, using as an example N =4.
The graphs are drawn not as functions of y, but as functions of the more
“natural” variables z, =1/(dy ,y) defined in Eq. (4.65). In Fig. la we plot
versus z,, while in Fig. Ib we plot versus Z,; different aspects of the
behavior can be observed in these two plots.

A few interesting features that can be seen in the graphs for N=4, and
that can in fact be proven easily for arbitrary N, are:

(1) In the limit y— 0 (ie., Z,, Z, — c0) we have hmy_,ORZ v i(7)=0
(for finite B). More precisely, an expansion for small y of RQ’N‘ «(y; B) for
arbitrary k gives

RO, (33 B) = S (1400 =5-+0 (5 (485)

independent of B. This behavior is observed in Fig. la, where the dashed
curve represents (4.85).

(ii) For 0 < B <2 the curve is decreasing at small Z; (or Z,), while
for B>2 it is increasing: this can be seen from a large-y expansion of
R;go;)N, l(}’)-

(i) limg_ .. R;‘f’N. W(y; B)=1for all fixed y >0 (i.e., all fixed z, < o0).
This behavior is observed in Fig. 1b.

Let us next look at the isotensor sector (k=2). In Fig. 2 we plot the
ratio R, ,(y) as a function of 7, for three different values of the
parameter B, for the case N=4. Figs. 2a and 2b show the same curves, but
emphasizing different ranges of the variable 7,. A few features that can be
seen in the graphs for N =4, and that can also be checked from the explicit
formulae for general N, are the following:

(1) The curves are monotonically decreasing functions of the family
parameter B for each fixed value of the abscissa z,. [ We can write

RL‘?’N. Wy; B)= RSQ)N W(7:0)— [R‘;”N (7 0)— R(O)N W75 00)]

Z‘O’E()’) 1Bys <Z‘°’0(Y )
1 yBys+ 1 N 486
TZ90 . S "z e
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['SS function for yy,: N=4, k=1

FSS function for yy,: N=4, k=1

A R

B=w
1.0
\

Fig. 1. Graph of the ratio R, , as a function of (a) £, and (b) =y, for the case N =4, for
the family (4.84) of universality classes. (a) The lowest curve corresponds to B =0, which is
the N-vector universality class; the highest curve is B=20; the third solid curve is the limit
B— +ao; and the dashed curve is the asymptotic behavior (4.85). (b) The lowest curve is
B=0: the next three curves are B=2, B=8$, and B =20, respectively; and the straight line is
the limit B — + o,

¥22:86.3-4-11*
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FSS function for yy,: N=4, k=2

T T

rv1|l|ylev||||

0)
R;;AZ

oo 1 1 1 1 ! 1 1 J_l;l‘gl;l i i l 1 i L L
0.0 0.2 0.4 0.6 0.8
2,

FSS function for yy,: N=4, k=2
T I‘ T T I' T T T [ T T T T ] T T T T

Fig. 2. Graph of the ratio R\, , as a function of 7,, for the case N =4, for the family (4.84)
of universality classes. (a) The highest curve is B=0 and corresponds to the N-vector univer-
sality class; the lowest curve is B= oo and corresponds to the the RPY~! universality class;
the curve in-between is B=1. (b) The upper curve is obtained for B=0 and the other for
B =+ o; the dashed curve is the asymptotic behavior (4.85).
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where Z\'E (or Z10'9) is Z'? with the sum restricted to even (or odd) /,
and all the Z,’s are evaluated at B=0. This proves the monotonicity in B
for fixed y.]

(ii) The curves coincide exponentially rapidly for large z, (ie.,
small y). Indeed, for k even, the behavior for small y is (see Appendix B.6)

Aw i 2
Ry (y; BY="5L Py ()1 + O(e "] (487)

where P, (y) is a polynomial independent of B. (More precisely, in
Appendix B we shall prove this behavior only for k=2, but we conjecture
that it holds for all even k.) This is why the dependence on B disappears
in Fig. 2b long before the curves show the asymptotic behavior (4.85).
Physically, the behavior (4.87) reflects the fact that the universality classes
(4.84) are equivalent at all orders of perturbation theory; the B-dependence
is a wholly nonperturbative effect. A similar situation occurs in the two-
dimensional g-models.">”"!

(iii} The curve for the RPY ! case is not monotonically decreasing as
a function of Z,, but is slightly increasing for small Z,. (In fact, an expan-
sion for large y shows that the function is increasing at small 7, for all
values of B.)

4.3. Corrections to Finite-Size Scaling

In this section we shall compute the corrections to the finite-size-scal-
ing functions. We assume a large-J expansion of the form*°

Oy ilI) =1 =8y  A) + By AcorT) + 0(Acond ) (4.88)

where A4, (J)/A(J) goes to zero for J - + co.
In the limit J— + 00, L —» o0 at LA(J)=y fixed we have

Al D) 7 ., Aeord )
A(J) “E"“’-"A”)J"’<A”)’ A(J) >]

=exp( —yay [ 1 — yby  AJ) + o(A(J))] (4.89)

Uy () =exp(—yay )| 1+ )’EN, k

% In Section 4.12 we computed dy , and by , for 1wo simple cases of Hamiltonians 7(7):
(1) 7=11s the only absolute maximum and '(1)>0 {this generalizes the N-vector model);
and (ii) 7= +1 are the only absolute maxima, 71} is an even function, and &'(1)> 0 (this
is the symmerric subcase of what we called in Section 4.1.2 the “second simple case™ see
footnote 30 and the text following it; it generalizes the RP¥~' model). As discussed before,
we look only at the even-k sector in case (ii). In both simple cases we obtain the same coef-
ficients dy z, by [cf. (4.19)-(4.21)]; and we have A(J) ~ 1/, Ao (J) ~ 1172
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where A(J) is the more slowly decreasing of 4_,(J)/4(J) and A(J), and
—by, is the corresponding coefficient. [Of course, if A(J) and
Ao J)/A(J) are of the same order, then —by , is given by the sum of the
two coefficients.] Plugging this expression in (3.13)—(3.15), we immediately
obtain the corrections to the finite-size-scaling functions. Notice that the
procedure is straightforward, and by adding more terms in the expansion
(4.88) we can compute the corrections to any arbitrary order. For example,
for the susceptibility we obtain

Iv s L) = LExR ) + x5 2(0) A(J) + o(A(]))] (4.90)
where
= @2 —yan. b l; B
L) Enktm€ [ NI ONm_F
Ko l?) = yZ‘O’ Z: Ny Avaml Aviim Pow.i
~ Z ‘/V ."e‘)'ﬁ:\l "5/ .u:| (491)
Z00), 0 " ¥

In the same way, the ratio R, v ,(J; L) defined in (4.70) is given by
R, v I3 LY=RO (y)+ A(J) RV () + o(A(J)) (4.92)

with
LI)N W(y)= ) aN k [XN il (O)A()’)] (4.93)
where we have used (4.74) and the expansion
(J; 00) = 2 [ 1 bu.i A(J) +o(/T(J))] (4.94)
AN dy i AJ) Ay k '

These formulae simplify considerably in case b, , has the simple
structure

bN.k=dN,kCN (4.95)

for some coefficient c,. In this case we obtain the simple formulae

(1) (0)

d
Xn. A(V):CN)’d_y,(N (7 (4.96)

RN, k(y)=-;-ﬁ [yx““ 2] (4.97)
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In particular, the two simple cases mentioned above (see footnote 40)
satisfy this requirement with

ey={N+1)r+1 (4.98)
Indeed, we have here A,.(J)=A(J)’, so that A(J)=A(J)= 1/[2k'(1) J]

and 5,\,.,\.=%d,2\,_,\_—b,\,~,\.; the claim then follows from (4.19)(4.21). Note
that R’ (y) here depends on r only through the global factor
(N+1)r+ 1L

We now study in more detail the classes satisfying (4.95).

In Fig. 3 we show the correction to finite-size scaling for the spin-1
susceptibility for the N=4 and N=8 N-vector universality classes [cy

given by (4.98) with r=07]. We plot as a function of z, [ defined in (4.65)]:

o Points: the difference
[RzzN.I(J;L)_R(-/(?)N.](y)] L (499)

for the N-vector model {with N =4, 8 and for different lattice sizes).

o Curves: the corresponding limiting curves R!!, (y) given by
(4.97)/(4.98) with r=0.

Corrections to FSS of xy,(z;)

—f|||IV||ﬁ*‘[r|||!||1|

0.4 — —

0.2 —

(R (BL) R (N)]L

(ST U R

0.0
0.0 0.5 1.0 15 2.0
Z

Fig. 3. Corrections [R,. v (J: L)— R, ,(»)]L to the finite-size-scaling function of
R, y.{J: L} for the one-dimensional N-vector model as a function of 7. The upper and lower
curves correspond to N=4 and N =8, respectively. Symbols indicate L=4 (+), 8 (+), 16
(%), 32 (O). The function (4.97) (for these two values ol N) is also plotted.
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Now we can compare the corrections shown in Fig. 3 to the corrections
for the case in which we choose z, =& )(J; c0)/L as the variable in the
abscissa. As was done in the previous section, we must replace y in formula
(4.92) by its expansion in terms of z, to the desired order, given by

y=—t {1-@5(./)%(/?(1))] (4.100)
AN kZk Ay
We get
Ry:/\’. I(J; L)=R‘79)N 1 <~ — >+0(/-f(-])) (4101)
' AN 2p

That is, there are no corrections at order A(J) in this case; in other words,
the corrections of order 1/L found for Fig. 3 are not present here! Empiri-
cally it appears that the leading corrections are in fact of order 1/L* see
Fig. 4. (The limiting curve shown was evaluated numerically by taking a

Corrections to F'SS of yy,(z,)

e R/ Atanana eSS
0.3 — ‘ _
A -
~ = AN 4
5% 0.2 — -
g o2y . ,
|
= ! . |
z L 1
2 0.1 ]
— | \\l‘i |
I N
0‘0- T 11 ‘ i 1 1 1

Fig. 4. Corrections [R, n (/i L)— R\ ((y)]IL* 1o the finite-size-scaling function of
R,. . i(J: L) for the one-dimensional N-vector model as a function of =,. The upper and lower
curves correspond to N =4 and N =8, respectively. Symbols indicate: L =4 (), 8 (+), 16
(x ), 32 (0). The corresponding limiting curve (numerically evaluated for a large value of L)
is shown for both cases.
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very large value of L.) The same holds for the corrections to finite-size
scaling written in terms of the variable

xe=x,{(J; L)=

(2nd) - L
———EN"';JJ’ ) (4.102)

that arises naturally in applying finite-size scaling to Monte Carlo simula-
tions: see Fig. 5.

The fact that the plot in terms of z, or x, shows better agreement with
the finite-size-scaling curve than the plot in terms of Z, can be interpreted
as a manifestation of the difference between “scaling” and “asymptotic
scaling.” As used by lattice quantum field theorists, these terms mean the
following (see, e.g., ref. 7): “Scaling” denotes the convergence to the
continuum limit for dimensionless ratios of long-distance observables and
for the relations between such observables. “Asymptotic scaling,” by
contrast, denotes the convergence to the asymptotic predictions (e.g., as
J— o) for the relation between long-distance observables (such as y or ¢
or combinations thereof) and the “bare” parameters in the Hamiltonian

Corrections to FSS of yy,(z;)

043"*rﬁ—1'—r’||7*r[||||l||l

0.0 0.5 1.0 1.5 2.0
Xy

Fig. 5. Graph of {[xx (J: LYxa (J:20)] = (2% (31)/x'0(2y) ]} L? as a function of x, for
the one-dimensional N =4 N-vector model. Symbols indicate: L=4 (*), 8 (+), 16 {x),
32 (). The corresponding limiting curve (numerically evaluated for a large value of L) is
also shown.
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(ie, J).*' Clearly, asymptotic scaling (to a given degree of accuracy)
implies scaling (to the same degree of accuracy), but not conversely;
otherwise put, the corrections to asymptotic scaling may be much larger
than the corrections to scaling. Now, R, v (J; L) =y n 1 (J; L)/x 5. 1(J; 00)
and z,(J; L) =& (J; 0)/L are examples of dimensionless ratios of long-
distance observables, while z,(J; LY=1/[dy ,LA(J)] is an example of a
bare parameter (by virtue of its explicit dependence on J). In this model
the corrections to asymptotic scaling are of order 1/L, while the corrections
to scaling appear to be of order 1/L%

5. ATWO-PARAMETER FAMILY OF HAMILTONIANS

In the previous section we investigated the continuum limits arising
from a one-parameter family of interactions. One might imagine that,
by considering many-parameter families of Hamiltonians and taking
appropriate trajectories in the multiparameter space, one could find addi-
tional continuum limits. We have investigated this problem for a two-
parameter family of interactions given by

ho-ty=J,li,(6-T)+Jhp(c:T) (5.1)

We will not study the problem for generic /1,- and %, but will restrict our
discussion to the case in which /i, is an odd function and has a unique
maximum at 1 while /i, is an even function and has maxima at =+ 1.
Moreover, we will assume 7,.(1)>0 and 7;’7(1)>0 and we will consider
only the case J,,J->0. This generalizes the mixed isovector/isotensor
model

/1(0-1:)=J,~c-t+']?r(o"r)3 (5.2)

studied in refs. 5-7.

We want now to find the critical points of these theories. Since in
dimension d=1 no phase transition can occur for finite values of the
couplings, we must investigate the limit in which at least one of the two
couplings tends to infinity. It is trivial to see that in the limit J, —» + o0
with J- fixed and finite one recovers the RP”~"' universality class; while in

*'In place of the bare parameters, one may alternatively use shor-distance quantities such as
the energy E, inasmuch as they play a similar physical role.
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the limit J,- - 4+ o0 with J, fixed and finite one reobtains the N-vector
universality class. It therefore remains only to investigate the case in which
both J,- and J, go to infinity.

(a) Let us first consider trajectories such that J,/J,.—0 as J,,
Jr— +co. In this case, from (2.27), we get

Fa iT i I = fiuld 1 T7) [ |-ty 0 (i ﬁ)} (53)

where

) B eh(l) N 11’(1) I = N:2
f/v(Jr,J-r)—[—ZWF<E>< > ) (54)

P

1
2,(1)

e
N. k

[Mv.k+%(N—1)(N—3)— ril (53)

where 1, , are the eigenvalues of the Laplace-Beltrami operator on the
sphere and

r=h(0)/RA1) (5.6)

Thus, in this limit % r 18 an irrelevant perturbation, and we get the N-vector
universality class.

(b) Next let us consider trajectories such that J,/J,.=a with
0 <a < oo. In this case we can rewrite (5.1) as

Me-ty=J,[h,(6-t)+ah (6-17)] (5.7)

This is a one-parameter family of interactions with Hamiltonian /i which
has a unique maximum at ¢=1. Thus also in this case we get the N-vector
universality class.

(c) Finally, let us consider trajectories such that J,/J, — co. We get
from (2.27) -

al . 1 J.
Fyad s Jr) = fulJ i JI7) {1 —=+0 <7 J_>
s T

+(—=1)*exp[ —2J,-7,(1)] [1 +0 (j—')]} (5.8)

T
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where f(J,,, J;) is defined in (5.4),

1 ] NZ_I
0l == | Ap 5 (N= (N —3) r] (59)
Nk 211’7«(1)[ VT g 4 7
and
re=Rp(1)/R(1) (5.10)

It follows that

dn i y ~
on sl Jp) 1 === (1= (= 1)*"]exp[ =2/, B (D] (5.11)
T
where
Gy = (5.12)

A~A—2]~?,T(1)

To go further we must distinguish three different cases according to the
relative size of the two correction terms in (5.11), i.e., according to the
behavior of the product J,exp[ —2J,-h,-(1)].

(i) Let us first consider trajectories for which J,exp[ —2J,-%,-(1 )]
goes to zero. In this case the exponential term in (5.11) goes to zero faster
than the 1/J, term and can thus be dropped. We reobtain in this way the
N-vector universality class.

(ii) In the opposite case, when Jrexp[ —2J, B (1)] > + o0, the
leading behavior is given by

l—ay  JJr for k even
(S, J )= ) ~ .
Un ity Ir) {1 —2exp[ ~2J,F,(1)] for kodd O
so that
_fanlr for k even

’""““{2 expl —2J,,(1)]  for k odd (3.14)

Thus for all £ odd
Ry =2 L ON2 020, F,(1)] > 0 (5.15)

~
my . 2J7

so that these limits belong to the RPY~' universality class.
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(1) Finally let us suppose

- B
Jrexp[ =27, 0 (1)] > — (5.16)
T iy 4h’T(1)
where B is a constant. In this case we get
l—ay My for k& even
oy (S J ) = B 5.17
vlJ i I 1) 1_{~N‘k+7_}/‘]r for k odd ( )
4h'r(1)
and
1 An ok for k even
R ———— " 5.18
T TIY A {/1,“.+B for k odd (>.18)

Thus, for 0<B< o we find again the intermediate universality class
(4.58)—interpolating between the N-vector and the RPY~' universality
classes—which appeared already for one-parameter Hamiltonians with
maxima at = +1.

Let us notice that in this last case the even-spin correlation functions
are equal to those of the N-vector model, while the odd-spin ones are a
product of an Ising correlation and the corresponding N-vector correlation.
This family of theories is parametrized by B (0 < B< c0) and all the limit-
ing mass ratios %, , are determined in terms of B as in Eq. (4.50). Equiv-
alently, we can choose any one of these ratios (with k& odd) to characterize
the universality class; for instance, we can use the ratio

Ry | =—= 5.19
A mN. l (/\b;.‘!’.’” ( )
In the continuum limit we have
2N
Ry | =———— 52
A =115 (5:20)

Thus each theory is labeled by the ratio #,_,, which can assume any value
from O to 2N/(N—1). Notice one special feature of d=1: the maximum
value of m, ,/m, | is not 2, but rather is larger. This is due to the fact that
in (spacetime) dimension d =1 scattering states cannot exist, so the usual
inequality m, , <2my , does not apply.
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APPENDIX A. PROPERTIES OF HYPERSPHERICAL
HARMONICS

A.1. Calculation of .4, ,=dimE,

Let us begin by computing the dimension of the linear space F, ,
consisting of the completely symmetric and traceless tensors of rank k over
R". This can be done by computing the dimension of the space of all
completely symmetric tensors of rank k and then subtracting from it the
number of independent trace conditions that have to be imposed to ensure
the tracelessness of these tensors. The number of linearly independent sym-
metric tensors is given by (¥*F~') (the number of ways of placing k
prisoners in N cells), and the number of traces is given by (¥}*7%) (the
same binomial as before, but considering only & — 2 indices; of course this

simply vanishes if k <2). Therefore we obtain

. ) N+k—1 N+k—3
Ay =dim E,\,_k=< B >—< P > (A.la)
_I(N+k) I(N+k-2)

" kIW[(N) (k=2)! I(N) (A1b)
_N+2k—2I(N+k—2) (Alc)

k! I(N—1)

[with the interpretation (—2)!=(—1)!=o0 in (A.1b)]. This proves
formula (2.2).

We shall take (A.1b)/(A.Ic) as the definition of .4}, , for N noninteger.
(By contrast, we shall always consider k to be an integer =0.) Note that
for each fixed integer k>0, .V, , is a polynomial of degree k in N; in
particular, it is well-defined and finite for all real N. Note also that for
each fixed N (not necessarily integer), we have .¥, , ~x2k™ " %/[(N—1) as
k— co.

The simple identity

kK(N+k—2)

Avia k= NN=1) Mk (A2)

will play an important role in Appendix B.
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Finally, for integer N =3 we have the following formula:

2

N i
NET(N=2)!

(N —4)/2 N—2 2 ,
Il [(k+T> —r'] for Neven>4
r=0

X (A3)

_ (N—5)/2 N—=2\2 2
<k+¥> 0 [(HTZ) _<,-+%>] for Nodd >3

r=0

In particular, for even (resp. odd) N=3, 44, is an even (resp. odd)
polynomial in the “shifted index” &+ (N —2)/2. Note, however, that for
N=2, ¥y is not a polynomial in k: for k > 1 we have .¥, , =2, in agree-
ment with (A.3), but A, (=1#2.

A.2. Some Basic Formulae

Let us now compute the integral of a product of an even number of
¢’s (an odd number gives trivially zero). Let us introduce, for an arbitrary
vector A,, the quantity

1,(A) =jdg(c) (4-6)% (A4)

As dQ(e) is rotationally invariant, we have I, (RA)=1I,(A4) for every
Re O(N), so I,(A) depends only on |4|. Moreover, I, is manifestly a
homogeneous function of degree 2k. Hence we must have I,(4)=J,[ 4%]*
for some constant J,. Now, as 6>=1, we get from (A.4)

0 0
aA“@Ik(A)zzk(zk—I)Ik_l(A) (A.5)

A recursion relation for J, immediately follows:

2k—1
T Nrak—2 (A6)

Using J, =1, we obtain the general solution

_ Ik+1/2) [(N]2)
KT I(1/2) T(N2 + k)

(A7)
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Taking then 2k derivatives with respect to 4 in (A.4), we obtain the well-
known result

T'(N/2)

Jd.Q(O') o™ --~0‘1y=m

(5a|12.“512k—la‘l‘k+ ) (Ag)

where the terms in parentheses correspond to the (2k—1)!! different
pairings of the indices.

Let us now prove the orthogonality relation (2.10). This is completely
equivalent to proving that for arbitrary completely symmetric and traceless
tensors T , and U, , we have

“dg(a) Y3 (o) Y{{,‘_‘,"”’(c)] T % US M =58yTy . Uy (A9)

To prove (A9), let us first use the definition (2.3) and notice that the
“Traces” terms do not give any contribution, due to the tracelessness of
Ty r and U, ;. Thus the Lh.s. in (A.9) becomes simply

Un cHN 1 J dQ(e) g™ - g%/ ... oP T - U (A.10)

Then let us use (A.8). The only nonvanishing contributions come from
those terms which do not contain 6*% or 6##; such terms exist only if / =k.
In this last case there are k! equivalent contractions and we end up with

2 T(N/2)
Okl k [mkl] Taww - Uni=0uTni - Uni (A1)

We thus obtain the orthogonality relation (2.10) for the Y’s, provided that
they are normalized as in (2.4).

The general formula for the hyperspherical harmonics** can be
obtained by using the fact that they are completely symmetric and
traceless. The complete symmetry, together with the needed transformation
properties under SO(N), implies an expansion of the form

42

Lk/2]
YR0M0) =pns Y An i Py (o) (A.12)

s=0

2 This result is obtained in ref. 27. Note that in their notation P includes all the k! permuta-
tions, i.e., it is [(k—2s)!5!2°]' times our P.
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where
Pl e)=0%%2. .. g% -1+ ... g™ 4 permutations (A.13)

and the number of permutations necessary to make P, completely sym-
metric is {25 — 1)!! (5.). Now we impose the tracelessness. We first note that

Ona, Pl 7(0) = PRITENO) + (N + 2k =25 = 2)P5E, _\(6)  (A14)
and therefore we get from d,,,, Y3 i *(¢) =0 the recursion relation
Ay s 1 +(N+2k—25—2YAy ,.,=0 (A.15)
Imposing the normalization A4, ;.q=1, we find

(=1 I(N2+k—s—1)

Ay i..= .
N.okis 2 r(N/2+k—l) (A 16)
Thus we can write
L2l 1y (NR+k—s5s—1
Y o) =ty D, W )P""""(G) (A.17)

o 2 T(N22+k—1) (k:s)

Let us now discuss the relation between the hyperspherical harmonics
and the Gegenbauer polynomials. From Section 2 we know that Y} '(¢)
is the restriction to the unit sphere of a degree-k harmonic polynomial.
Moreover, it depends only on ¢', so that the polynomial can be written as
r*P,(x,/r), where r=|x|. Requiring the polynomial to satisfy Laplace’s
equation, we get for P,(x) the equation

(1-x%)

e N1 k(N +k—2)P =0 (A1)
dx? dx

The regular solution of this equation (ref. 37, p. 1031) is the Gegenbauer
polynomial C}”>~'(x). The normalization is fixed by the requirement that

Yy i '(6)=uy {0")* + lower-order terms (A.19)
We thus get*?
N2+k—1[ /N
YL (o =—[T(——l> cyr-1 0")] (A.20)
O = TN e | T2 T

* Note that this formula is well-defined in the limit N — 2. See footnote 14.
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which, using the fact that

Cz,/z_l(l)=<N+k—3>

. (A.21)

gives (2.23).
Note that we could have derived (A.17) by using (2.23) and the expan-
sion of the Gegenbauer polynomials (see ref. 19, formula 14, p. 294).

A.3. The Projector onto Symmetric Traceless Tensors

Using properties 1-4 of the projector I3, ™ /%, we can derive its
general expression. We start by noting that the most general form satisfying
the symmetry properties 1 and 2 is

L&/2]
ot B B coeag e B
IRl = 3 By g QR (A22)
s=0

where

Qlli ke B = gmme L §one- x| Ofr- x| 5
(k%) -
+ permutations (A.23)

(ie., there are s &'s among the o’s, s among the f’s, and k — 2s connecting
the o’s with the f’s) and the number of permutations necessary to make
O\x. s, completely symmetric is given by

kN2 1
<s_v7> (k—2s)! (A-24)

Now notice that a consequence of properties 3 and 4 is
I3 Br-- B Y{{,’V',;,‘/”" =y 10 fuiBegh L gh = Ya o (A.25)

If we substitute in this expression the general formula (A.17) for Y73 .
and formula (A.22), we obtain

2°s!
BN.k:A\'=AN,k:.\‘F (A'26)
Therefore we get the general expression
Lki2] SUONR2+k=s5=1) .,

k! I(N2+k—-1) (k;:\-‘)a“/}'mm‘ (A.27)

I’l\}'l;‘“kilfl"'/fk= Z (=1)*
5=0

§ =
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We must now check that (A.27) satisfies properties 3 and 4. Property 4
follows immediately:

I;,]../;;z,\.;/h - T/" < Br _% ?A‘-Eb')ak: P B T/fn B — Tau (A.28)

where in the first step we used the tracelessness of T , and in the second
its symmetry. In order to prove property 3, let us introduce

Py u)= () Pil 7 (u) (A29)

. L&k/21 .

YR =pna Y AvaPiigH) (A.30)
y=0

where u is an arbitrary vector. We note that

0 0
o B () = 20! QL A3l
aum auﬂk (k:s) (u) s Q ( )

and therefore we can write

Also, from (A.29), we obtain
S P (W) =12 P53 (W) + (N +2k—2s—2) P _(u)  (A33)
From this and (A.15) it follows that
Gy Y2 (1) = 0 (A.34)

xpa)

and therefore property 3 is satisfied.
Finally, using (2.25), we can prove the trace formula (2.16). Indeed
from the orthogonality relations (2.10), summing over all indices, we have

I = [ dQ(6) Yy (6) - Yy u(0) (A35)

The scalar product in the r.h.s. is rotationally invariant and as such it does
not depend on ¢. Choosing 6 =w=(1, 0,..., 0) and using (2.25), we get

Ly = Yy (W) Yo W) = Y W) sy = Aas (A36)
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A.4. Expansions in Terms of Hyperspherical Harmonics

We want now to discuss the convergence of the expansion (2.18). We
will begin by showing the following result: given a generic (real) tensor
T3 . *, the hyperspherical harmonics satisfy the inequality

[Tyi- Yy 1\-(0')]2 STy Ty k) Nuk (A.37)
Indeed, using Schwarz’s inequality and (2.25), we get
VRS 9 Ho)]? ST Ty ) Yuilo) Yy (0]
= ( TN. k- TN. /\)[ Y.'V.k(w) : YN. /\(w)]
=( TN.k ’ T.fv.l.-)v'V,rv.k (A.38)
Moreover, equality in (A.37) is possible only for those ¢ for which
o™ =yYy o) (A.39)

for some constant y. This requires first of all T3 ', * to be symmetric and
traceless. The constant y is easily obtained squaring the previous relation:

) TN. k- TN. k

}J =
e

(A.40)

Now let us consider the special case T3 * =YY%, *(w) with
w=(1,0,.,0) and k> 1. Equality in (A.37) is possible only if

YR e) = 2 Y5 (w) (A.41)

We will now prove that if N> 3, this implies ¢ = +w. Let us first notice
that if ¢ satisfies (A41), then every ¢'=Ro with Re SO(N) such that
Rw=w also satisfies (A.41). Now if ¢ # +w, there exists an index a#1
such that ¢*#0. If N> 3, we can consider rotations R in the («, #) plane
{with f+ 1) and generate solutions ¢’ with ¢'* assuming any value between
—o* and ¢* This means that (A.41) with &, = ... =«, =« has an infinite
number of solutions, which is impossible, as this is a polynomial equation
in ¢* Thus for N> 3 we must have 6= +w. This result can easily be
rephrased in terms of Gegenbauer polynomials: since C}?~'(1)>0, it
implies that

|CF2=Y(x)| < C¥2-1(1) (A42)

for —1<x<land k= 1.
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For N =2 the previous result is not true. Indeed in this case every
6 = (cos mj/k, sin mj/k) with j=1,2,..,k is a solution of (A41). To show
this, let us notice that dim E, , =2 for all &, so that there are only two
independent equations to satisfy. Using complex indices + =1+i2 and

noticing that §* * =4~ =0, we obtain
Yo "= 40” 0t =py e (A43a)
Y T =pa 0 0T =gy e (A.43b)

where ¢ = (cos 6, sin ). Therefore, Eqs. (A.41) are equivalent to
e = +1 (A.44a)
e H = 41 (A.44b)

which proves the result.
To discuss the convergence of the series (2.18), let us first notice that

= Y [da(e) d2c) flo) f(v) Y3y ™(e) Y 1) (AdS)

Using the completeness relation (2.20), we get
Z ]—‘Zl”.y.f;l“'n=J‘dQ(c) |/(0.)|2 (A46)
k=0

which is the Plancherel identity for harmonic analysis in SV ~'. Now let us
consider, instead of f, the function #"f, where 5:” is the Laplace—Beltrami
operator. In this case /7' * is replaced by A%, , "*, and thus we obtain

S A T =fdf2(c> £ f(o)]? (A47)
k=0

If now fis a C* function, the integral is finite for all n. Thus the sum on
the Lh.s. is converging for all n. As Ay , ~k? for k— oo, we get that, for
every n, fnfm o mfa om0 for k — oo. This implies that all coefficients
j P dec1ease faster than any inverse power of k. To prove the con-
vexgence of the series (2.18), it 1s then enough to notlce that | Y3 . ™| <
(.#y «)"? and that .+, , behaves for large k as k" 2

822.86.34-12
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In general we can write

flomy= 3 T momys o) Yy Me) (A48
Nk oh N. .

kh=0

Invariance under rotations gives
TT\;A XTI “M(R)Tﬁ’l.‘l;'ﬁh: I '”'S"(R) 3'\|’;- A’It By — filll\ /nk: Bue- By (A49)

for every rotation Re SO(N). Then, by Schur’s lemma,

B SLE T T 6L SV (A.50)
so that
fle ty=3 Fy Yy d6) Yy (1) (AS1)
k=40

Let us now discuss the properties of the coefficients F . in (2.27). The
second property follows immediately from the previous discussion. We
want now to prove that, if f(z) is positive for re{—1,1], then
|Fy sl <Fy o for k= 1. Indeed from the definition and (A.42) we get

! CN2=1(yy
2N =32 o Wy
IFNl‘Isf_ldt(l t) f(t) C,I‘V/z_l(l)
1
<J dt (1— 12N =372 £(1)
-1
=Fpr o (A52)

A.5. Clebsch-Gordan Coefficients
Let us now discuss the computation of the Clebsch-Gordan coef-

ficients (2.36). For arbitrary completely symmetric and traceless tensors
Ty ., Uy, and V, ,, we want to compute

[420) [ Twic Yl @)U Yo @)L Vi Yol@)]  (AS3)
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Using the definition (2.3) of the hyperspherical harmonics, we find that this
reduces to

B kN EN m J‘ dQ(G) [0-1I e o-lka-/fl e Uma“ ceg™
xT“‘""“'U”""”’V’""'F’”] (A.54)
Nk NI N.m .

From this we see that the integral vanishes if k + 7+ m is odd. On the other
hand, if k+/+m is even, we can use (A.8). We must now compute how
many scalars we can construct with the three tensors. It is easy to see that
there is only one possible scalar, with the following structure: / indices of
Ty . are contracted with / indices of V' ,,, j indices of V', ,, are contracted
with j indices of U, ,. and A indices of U, , are contracted with 4 indices
of Ty ,. Here i=(k+m—1)/2, j=(m—k+1)/2, and h=(I+k—m)/2. Of
course I, j, and s must be positive and this is equivalent to |/ —k|<m<
!+ k. We must then compute the combinatorial factor, ie., in how many
ways this scalar can be constructed. We find

KN/ I\/m k't m!
g =
<i)<h><j>"]'h' it jvht (A.55)

Thus the integral becomes

ﬂN. k#N' hu N k' 1' /71! ay - aiby -
Wk o AR+ LTV JURY T NH

RUR Y (AS6)

nt

Formula (2.36) immediately follows.
Finally we want to discuss the computation of ¢3., , ,,. Using (2.36)
and (2.34), we get

(g/:\’: kidom™= f dQ(G) (ga}l\;llel‘nlm B
x Y2 '-'11.-(0-) YH "'/fl(o-) Y (@)
N k N Nom

_ HEN kBN BN k'I'm!
Havis A+ Y jUR!

x [ d(e) Y3 " o)

x YR e) YL o) (A57)
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where i=(k+m—1}/2, j=(m—k+1)/2, and h=(/+k —m)/2. The quan-
tity which remains inside the integral is a scalar; as such it is o-independent
and thus we can drop the integration.

To compute the remaining contraction, let us use the general expres-
sion for the hyperspherical harmonics given in (A.17). Then a straight-
forward combinatorial exercise gives

PR o) Yi I He) Yy, o)

=s! <h)<1) a_(:l . o_ul,__‘a/n o o_h,-_“-
S/\S

XYy (e) YR (o) (A.58)

Note that this gives zero if s>/ or s>i. Now let us define x, as

oY o (6) = x, YN (o) (A59)
It follows that
: Nk
H Xy =0"--0% YKE.'I;-'M(O')= == (A.60)
m=1| ﬂN_ k

and therefore we obtain

./V‘/ 2 -
X, = N. k lf:}/.k 1 (A61)
Uy Ny

Thus (A.58) becomes

h\/i At Vo BN e s BN e s s
Sl< )( >”JVJ‘V_>[+,\' NI YN BN i—nss BN om—i+s (A62)

s § Ky By - /V/‘V. I—h+s 'A/N, m—i+s

and we get the final result

M Ny kT m!
P S+ PV jURY

" . . 2
M (=1 I(N2+k—s—1) ,<h><l>#7v.f+x
XEO 2 nN2+k=1)  \s\s) ¥ .. (A63)

2
(gN: kolom
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where M =min(| k/21,i, h) with i=(k+m—1)/2, j=(m—k+1)/2, and
h=(l+k—m)/2. We remind the reader that (A.63) holds only when
k+1+mis even and |/—k|<m<I+k; in all other cases, 3., , ,, =0.

There is another way of computing %%, ,,.. Using (2.35), we can
write

Gk = | d2A0) dA) [ Yy 4(6) - Yy 1(D)]

X [ YN. /(6) ! YN. /(t)][ YN. ,,,(0') : YN. ,"(T)] (A64)

The integrand is only a function of ¢-t. Thus, using the rotational
invariance of the measure, we can fix one of the two spins to an arbitrary
value. Let us set t=w=(1, 0,.., 0). We obtain, after integrating in dQ(t),

Crintm= J. d2(o) [ Yy i(6) Yy 1(W)]
X[ Yy (6) Yn (WL Yn ,(6) Y ,(W)] (A.65)
and by using (2.23) we end up with

) -
(g—N:/\'. L= ;/P l‘/VN,/\"/V‘N.I'/‘/N,m
N

1 C/Y/'_’—I(t) CN/Z_l(f) CN/.'Z— l(t)
1 — 2\(N=3)2 >k ! "m A66
Xj‘_]dt( t ) C;:,V/Z'I(I)C;Wz_l(l)CN/2~I(1) ( )

mn

If one of the three indices k, /, m is fixed to some specific value, this integral
is easily done using the recursion relations of the Gegenbauer polynomials
and their orthogonality properties.'*”’ In this way we have checked the
general formula (A.63) for k=1, 2 and [, m arbitrary.

A.6. 6-j Symbols

In this section we will discuss briefly the 6-j symbols. In dimension
d=1 they appear in the computation of the four-point function (not
treated in this paper), and in higher dimensions they play a crucial role in
deriving high-temperature expansions even for the two-point function.
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Fig. 6. Graph showing the spin assignments in the 6-j symbol Zy(a. b, ¢;d. e, f). Each
vertex denotes a Clebsch-Gordan coefficient.

The 6-; symbols (also called Racah symbols) are O(N) scalars defined
by

. EIRERE- SN RRRY | IS U RRRE (g7 - T IRRY- SS TR T T R
‘@N(a’ b’ ¢ d’ e, f) _(gN o, 1('( ‘ (gN a, I)"l ’ ‘

x(g/"l /f.lll e 'l/(ghl Oh/)’l CYei Ly (A67)

N:id. e,

See Fig. 6 for a graphical representation. The tetrahedral symmetry which
is enjoyed by the 6—;j symbols for N =3'*?) is trivially true also for generic
N. A different conventional notation for N=3is {7 ’ }.

We have not yet been able to compute a general formula for the 6—j
symbols, but we have computed a very large class of special cases: among
others, those in which one of the spins (say, a) takes the value 1 or 2, while
the other five spins take arbitrary values. This class of special cases is suf-
ficient for computing the high-temperature expansion of the S¥~' g-model
in general dimension d up to rather high order."*®

We begin by deriving a completeness relation for the 6~/ symbols. To
do this, let us first prove two properties of the Clebsch—Gordan coefficients.
Using their definition in terms of hyperspherical harmonics and the com-
pleteness relation (2.20), we can easily prove the crossing relation

LR TR SR U NS Ul e7 L SEEE PR TR S Ry
Z(gN:p.k.l (g

Nipomon
P

_Z(gN 7\[1 B frion-- r>m(gau u,. P YL EL - E (A68)
P m :
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The second relation we need, which follows immediately from Schur’s
lemma, is

(g%:-}\_:c%’:"/ﬂ---/f/:)’l )m(gmn aA /ix B S By

1 C

= YU vms 810 8 2

—5111. n‘/V IN.m " (m(gN:k. Lm (A69)
N.om

Inserting these two relations in (A.67), we get

) 1
Y Ra,b,cidoe, [l=——FC. 0o Enincs (A.70)
o '/4/;\' '
Next let us compute
'%‘/N,p:/\‘. . (gm i,:;|/+n;: ’:zl OB - ;m(gal v G;Am/fl CBEYE Ym (A.71)

Using (2.36), we get

:uNl\/uNltuNmk It'm!
M s S+ DGR

(g?\; Ai,ilpra;;/f'l” B Oy Spfue e By i vy (A.72)

prA/I”

where i=(m+k—1)/2, j={(m+1—k)/2, and h=(l+k —m)/2. Now, using
again (2.36), we also have

MUy, A+p:uN /+p:uN m (k+P) (1+P)'m'

N k / 3
ol p.m uNk+!+p(k+j+p)! Lit(h+p)!
(gol (>p1|/+7{f’|';~/f/.:(5|-»-fi,:/il---/fm'l--~)'j;)'l~--)'ja|~«1i (A.73)

Comparing, we get

Hn kN, :u?}-\’,/\'+/+p(k+j+p)!
HN kv pBN 15 p ﬂ;\/.k+_j(k+j)!
3 KD (h+ p)! R

(k+p) ([—l—p)'/’l' Nik+pl+pom

%N.p:k. Lm=

(A.74)

Using this result, we can now compute Zy(p, k+p, [+ p; Lk, m).
Indeed, using (2.36), we get immediately

'%N(p’k+pvl+pal,kam) #_NMA—[N/)I\IM (A75)

Hy. p+huN p+k
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Let us now derive a few other particular cases that are relevant for
high-temperature expansions.

Let us first consider the case in which one of the spins appearing in the
6-j symbols (say, a) is 1. In this case, using the tetrahedral symmetry, one
can see that all nonvanishing symbols can be rewritten as Z,(1, k+1,
I+1;Lk,m)or Zu(l,k+1,1—1;1 k, m), with k, [ arbitrary and |k —/] <
m <k + [ in the first case, max([k —!/|, |k —[+2|)<m <k +1 in the second
one. The first quantity is a particular case of (A.75), while the second one
can be computed using the completeness relation (A.70). Indeed we have

R k+1,1—1; 1, k, m)

1 2 2
= _'%1\’(1’ k+ 1’ l+ 1 ; [’ k’ m)+—(gl_\’ l.k.k+l(g/—V:k./.m (A76)
ek

Let us next consider the case in which one of the spins (say, a) is 2.
Using the tetrahedral symmetry, one can rewrite all the nonvanishing 6
symbols in one of the following forms:

LN =B k+2,1+2; 1k, m) (A.77)
LG = B2,k 14251k, m) (A.78)
A =R 2 k—=2,1+2; 1, k, m) (A.79)
LY =2k, 1 Lk, m) (A.80)

with k and [ arbitrary, m<I+k, and m>|/—k| for &Y!, ,, and
LN iy m>max(|l—k|, ||—k+2]) for &3, , ., and m>max(|/—k|,
|/—k+4]|) for &), , .. Using the completeness relation (A.70), we can
rewrite the last two quantities in terms of the others. Indeed

1
(3) -_ 1 —_ 2) @2 2
"d}\’:k./.m_ "dN;k. fLom "dN;k. /.m+ A (gl\': 2. l,/+2(gN:k.m.l (ASI)
= 1\"/
o) =2 — Y +—1 %> %3 A.82
Nk dm™ C N L k.om Nyl k—=2.m V. N2 LITP Nk ! ( . )
<N

'), .. is a particular case of (A.75). To compute .o/ i 1 We first use
(2.36) to get

2k #sz.zlu/zv.k'uN-/
k+ 1 /l;l\r_k_'.“u/\l,l-i-l

LI R VHE L RERE PO R T REY) P AREED RN LI RN S P R )
XCN "E N " (A.83)

(2) —_
'“%N: kodom ™



1D O(N)-Invariant Spin Models 643

Then, using again (2.36) and (A.22)/(A.23)/(A.26), we get

2 2

o2 = 2k BnoaMy kv e R L IRLEY IO Y TR ™
"Nk Lm k+1 2 Nol4+2 k.om

Hnkr BN 142

x Hn kN L R RNt S R
Nil+ bk~
Hn k-1 BN 1+

+(k—1) Ay 4., 7“”— e VY S R } (A84)

AN k—2

[where 4, .., is defined in (A.16)], and thus

ﬂ'}v.k#/\'./
2
k+1 gty BN k- B a2

”d(l\_li;)k. Lm= N(N+ 2)

Xl: :uN./ ‘%/}\,‘l:/.,_l‘k—l.m_”N.k—z%}\,'2:1'1‘_2'",] (ASS)

KN i+ KN x—1

APPENDIX B. FINITE-SIZE-SCALING FUNCTIONS FOR THE
UNIVERSALITY CLASSES (4.84)

In this appendix we study the finite-size-scaling functions for the one-
parameter family of universality classes (4.84): this family is parametrized
by a real number Be[0, +oo] and interpolates between the N-vector
universality class (B=0) and the RPV~' universality class (B=o0). In
particular, we want to study the asymptotic behavior in the perturbative
regime (y — 0) and show that in the even-spin sectors (k =2, 4,...) the finite-
size-scaling functions are independent of B modulo nonperturbative correc-
tions of order roughly exp(—n?/4y). (We will succeed here in doing this
only for k=2, but we conjecture that it is true for all even k.)

The basic idea can be seen in the simple case of the partition-function
scaling function Z'%'(y) defined in (4.77). We have

o

Z\(y; BY= ), Ny o7 (B.1a)
. =0
= § e ireh Y e T (BID)
=0 /=0
leven lodd
1l4e?® l—e 7% 5

3 Z;wazm) (B.lc)
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where we have defined

ZH-

Z ) Ny, e~ PH (B.2)

It is easy to see that Z}(y) is of order y ~*~ =" a5 y - 0: roughly speaking,

for small y the sum over / can be replaced by an integral. On the other
hand, we shall show that Z5(y) is exponentially small as y—0: more
precisely, it is of order exp(—=?/4y) y~¥ =2, Thus, the B-dependence of
Z¥(y; B) is given by the trivial prefactor (14e~7%)/2, up to nonper-
turbative corrections of order roughly exp( —%/4y).

A similar result will be shown for the numerator of the susceptibility
scaling function y'\ (y; B) [see (4.79)] for k=2, from which it will follow
that x'0’,(y; B) is independent of B modulo nonperturbative corrections of
order roughly exp(—nr*/4y).

The crux of the matter will thus be to control the behavior of ZZ(y)
[and the analogous numerator functions] as y —» 0. For N=2 this is a
simple consequence of the Poisson summation formula [(B.6) below]:

o 1/2 %
Zip= Y e—r"=<%> Y emtwmmr (B.3)

I= - m= —

127«
Z; ()= Z (”‘1)/ (7;> Z e~ (Wm+ 172 (B4)

"= —ao0

Likewise, for N =3 the Poisson summation formula controls Z~ (though
not Z*):

Zy_s(y=e Z (—1)/ (14 L)y eri+12r

= —o

32 s
= G) Yo (=) (m+ Ly et (B5)

n = — 7

We shall derive the analogous identities for general N by two alternative
methods:

(a) By developing generalizations of the Poisson summation formula
(Sections B.1 and B.4).

(b) By differentiating the identities for N=2 or N =3 with respect to
y [eg., (B.42)].
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B.1. Generalized Poisson Summation Formulae

Let fe #(R) [ie., fis a function of one real variable that is infinitely
differentiable and that together with all its derivatives vanishes at infinity
faster than any inverse power], and define f(¢) ={*_ e ~"(x) dx. Then we

have the well-known Poisson summation formula

S fk) =Y fal) (BS6)
=~

k=—on

and its (less well-known) one-sided generalization

f0+2 3 k= 3 f(27zl)+§PJ cotéf(t)dt (B.7)

o
k=1 I=—= -

e

where P denotes Cauchy principal value at each of the singularities of the
integrand. For a proof, see ref. 43, pp. 31-32 and 64-65. Here we will prove
the following generalization of the one-sided Poisson formula: for any real N,

- | o= i
Y Sy =5- [ Knt) f(1)dr (BS)
k=0 2ni_.

where

) 1+ei(l+i£)

o e 2 cos[ (¢t +ie)/2]
— NN ._)/._1 .

¢ a10 {—2isin[ (1 +ie)/2]} " (B9b)
= MN=D2L (1) (B.9¢)

is a well-defined distribution in &'(R).* Note also the recursion formula

1 d? N—=2\?
LN+2(I)=m[—F_<T> JLN(I) (B.10)

* The existence of (B.9) in the sense of tempered distributions is a consequence of the following
theorem (ref. 44, Theorem 2-10, pp.62-63). If / is analytic in the strip O<Im:z-<R
and satislies there the bound [f{x+iy)|<C(1+|x]"} y~" for some C, p,r<o, then
lim, o f(x+iy) exists in S(R). Sketch of proof: For a test function ge ¥ (R), define
M y)=f fix +ir) g(x) dx. We can compute the derivatives of /1 using the analyticity of fand inte-
gration by parts: A" p)=(—=i)" | flx +iy) g"'(x) dx. It follows that |1 (3)| < C, gl .y~
for a Schwartz norm ||-||,, ,. Starting from n > and using the fundamental theorem of cal-
culus, it is easy to show that lim,. |, /i( p) exists, with uniform bounds in terms of a Schwartz
norm of g. See also ref. 45, Section 12.2, Corollary 4, p. 192 for a similar result.
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For N integer >2, we can make (B.8)/(B.9) more explicit:

>

Z N Af(k)'— Z [ Z f(”) 2nl)

k=0 n=0
ton Pf Z Nnﬂﬂ& (B.11a)
N — oL d" e
= Z cN.n Z (_l) d[ [6_”(A_')/'f([)]
n=l [= - t=2nl
i+ Neven
1 o 2 cos(t/2) CN—2y2 7
2n MNTD2f(tydr (B
+2n J—‘zv[—Zisin(t/z)]N—'e S(tydt  (B.11b)

where the ¢, , and ¢, , are Laurent coefficients (see below), and of course
f‘"' denotes the nth derivative offf For N=2 we will have ¢, (=¢, =1,
so that in this case (B.11) reduces to (B.7).

We start from the well-known identity

I(N+k) z*

A-g()WF_( (B.12)

valid for complex = in the disc |z| < 1. (If N is noninteger, we of course take
the branch that equals 1 at z=0.) Using the expression (A.lb) for .4}, ,,
it follows immediately that

A

FA’(:)EZ N[\- (l_ ) N(l )

k=0

=(1—2)""V=""(1+2) (B.13)

We will use this identity to construct a “complex-variables” proof of
(B.8)/(B.9) and (B.11). [It would be interesting to know whether there is
a simple “real-variables” proof, as indeed there is for (B.6) and (B.7): see,
e.g., ref. 43, pp. 31-32 and 64-65.]

Let us begin by assuming that the function f, in addition to lying in
& (R), satisfies the bounds |f*"(x)] < C,e ="' for some constants C, < co
and J > 0; later we will relax this assumption. It follows from this that f (t)is
analytic in the strip |Im ¢| < J; moreover, in this strip / vanishes faster than
any inverse power of |Re ¢| when |Re f| — o0. So we can use the representa-
tion

ﬂm=%fxwvmm (B.14)

—
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where the contour of integration runs slightly above the real axis (say, at
Im 1 =¢ with 0 <& <d). It follows that

s

Z . 1 & o
Y Avaflk) =5 X Ak [ (e fdi (B.15)
k=0 k=9

e

This joint sumy/integral is absolutely convergent (since |e”|=e7“<1 and
f(t) decays rapidly at infinity), so we can interchange the summation and
integration. Using (B.13), we obtain

Y A Slk)==— ~— S(1) dt (B.16)

: Ly l+e"
2rnd_, (1 —e")

k=0

where the integration still runs at Im 7 =¢. Since the value of the integral
is independent of ¢ (for 0 <& < d), we can trivially take ¢ ] 0, thus proving
{B.8)/(B.9) for functions f satisfying the above restrictions.

It is easy to remove the assumption that f and its derivatives decay
exponentially. Just apply the foregoing result to f,(x)=f(x)exp(—ax’

and let «|0. Then f, equals f convoluted with a Gaussian (4ma)~'?
exp( —t?/4a), and this Gaussian tends (in the sense of distributions) to a

delta function as « | 0; therefore, }:—» 7 in #(R) as a | 0. In particular, the

right-hand side of (B.8), taken on f,, tends as « |0 to its value taken on
7: this is an immediate consequence of the fact that K(t) defines a dis-
tribution in .%/(R). On the other hand, the left-hand side of (B.8) converges
to its « = 0 value by virtue of the dominated convergence theorem.

Let us now assume that N is an integer >2, and let us again tem-
porarily assume that f and its derivatives decay exponentially. Then the
integral (B.16) at Im t =¢ can be written as the half-sum of the integrals
taken over Im 7= +¢& plus the half-difference. Now the half-sum is, by
definition, precisely the principal-value integral in (B.11a)*’; on the other
hand, the half-difference is —#i times the sum of the residues at the poles
t=2xl (I integer). Using the Laurent expansion

1 it za
%‘/e)N—_l= Z (l,\y.,”f’” (817)

(1 m=—(N—-1)

* Our “principal-value integral” is the same as the “canonical regularization”™ of Gel'fand and
Shilov (ref. 43, Sections 1.3 and 1.4). Note, in particular, Eqgs. (6), (7). (12), and (13} in
Section [.4.4 (pp. 94-95).
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around =0 (and of course an identical expansion at each pole ¢=2xnl,
/ integer), we obtain (B.11a) with

_ iaN. —n—1
cN.n'__E n (Blg)

We can see that the leading term in the Laurent expansion is
ay. _v_1,=2i""", and hence the highest-derivative coefficient in (B.11a) is
¢y n_2=—i"/(N—2)!. In particular, for N=2 we have ¢, ,=1, so that
(B.11a) reproduces (B.7).

Equivalently, we can use the Laurent expansion

2 cos(t/2) = N .
[—2isin(y2)]" ' Y dnwt (B.19)

m=—(N—-1)

around r =0 [and of course an identical expansion multiplied by (— 1) at
each pole 7=2x/, [ integer]. Note that d, ,, #0 only when m+ N is odd.
We therefore obtain (B.11b) with '

"

-~ _ _iﬁz\"7114|
CN. n 2 n! (Bzo)

Note that &y, #0 only when n+ N is even. The leading terms are
dy. _yy—1,=2i""" and hence ¢y y_,= —i"/(N—2)!. From (B.10) we can
derive the recursion relation

N-=-2
[(m+2)(m+l)a,\,,,,+7+< 2 )a,\,,,,J (B.21)

1
INe2m= TNN-T)
which together with the initial conditions @, _,=2i and d; _,= —2 yields
all the coefficients. Unfortunately, we have been unable to find a closed-
form solution for this recursion relation.

The assumption that f and its derivatives decay exponentially can be
removed as before, using the fact that both terms on the right-hand side of
(B.11a)/(B.11b) define distributions in &'(R).

If N is a real number <2 (not necessarily integer), we can rewrite
the kernel K,(z) in a somewhat more explicit form. Note that
Re(1 — e **} >0 for all 1, hence |arg(1 —e"'**)| < z/2. It follows that

lcos(#/2)]|

K,t _22—N HN = 1)y nj2 _
v [sin(7/2)|¥ !

eirio (B22)
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where

p(t)=— x (t mod 2x) (B.23)
and t mod 27 is taken to lie in the interval [0, 2z). Since N<2, (B.22)
defines a locally absolutely integrable function, hence is unambiguous as a
distribution. Equivalently, we can write

AN 212 s N N1 np  1COS(1/2 e
Ly(t)y=e ™2 PK (1) =22 "NtV D) /‘Wﬂ?w” (B.24)
where
N-=-2
() =o(t)+ 5 t=n(N-2)_t/2x | (B.25)

and | x| denotes the largest integer <.x.

For N>=2 these formulae are ill-defined because K,(t) has non-
integrable singularities at t =2n/ (/ integer). For noninteger N> 2 explicit
formulae can be obtained by using the recursion formula (B.10) [starting
from (B.24) at some N <2] together with integration by parts. (More
precisely, integration by parts is how one defines the derivative of a
distribution!)

Finally, let us go back to (B.9b)/(B.9c) and note an interesting
property of the kernel L, (valid for all N): we claim that if we decompose
L (1) into its symmetric and antisymmetric parts around ¢ =,

L,%(t)E%[L,\,(t)iLN(ZTc—I)] (B.26)

then the symmetric part L }(t) vanishes on the interval 0 <t <2r (ie., it is
supported outside this interval). Proof: The numerator cos[(¢+ig)/2] is
obviously antisymmetric around f=x in the limit ¢]0. As for the
denominator, the function values sin[ (7 +i¢)/2] and sin{[(2n — ) + ic]/2}
belong to the same Riemann sheet of the function zV~' provided that
0 <t <2z (and not otherwise), so that in this case they tend as ¢ | 0 to the
same point on the Riemann surface. Therefore, the denominator is sym-

metric around ¢ =7 in the limit ¢ | O for 0 < ¢ <27 (and only there). QED

Of course, the same argument can be made around any point =
(214 1)z, [ integer: the symmetric part vanishes on the interval 2n/<t <
2n(l+1).

This symmetry/support property is of particular relevance in case the
function e~V =297 (1) is symmetric around f=n (as will be the case in
our application below).
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B.2. Some Generalized Theta Functions

Now we shall apply the generalized Poisson summation formulae to
analyze the asymptotic behavior as y — 0 of some generalized theta func-
tions. Let us define

ZN. o 1(;;)5 Z »4/;‘\r.;\.€ik’)e_7"k+1)l (B27)
k=0

which of course is periodic in 8 with period 2z. Applying (B.16) with
f(_\,) =ei(l.\'e—)'(.\‘+1)', we obtain

1 172 . 1 ir ] .,
ZN-”-“”’”E@ | qoammen e e (Basa)

—_1_ <E>|2 = ixl) J" 2 cos(t/2)
e y ‘ _o [—2isin(#/2)]¥ !

% et — (N =2V2) 5=t =y gy (B.28b)

_1 n>l2e—izll 2i J." 1
T 2n\y N—=2J_, [=2isin(t/2)]V"?

x% [e"“‘*“\'*z‘2”e‘“7”’:"‘4)'] dt (B.28c)

where the contour of integration runs at Im:=¢>0; here (B.28¢c) is
obtained from (B.28b) by integration by parts. Note that the formula
becomes slightly simpler in the case a =(N —2)/2.

Let us consider first the case of N integer > 2. As before, the integral
(B.28b) can be written as a principal-value integral plus —zi times a sum
of residues. To compute the residue contribution, we use the Laurent
expansion (B.19), yielding

residue contribution to Z , .(7)

s "

bs 12 N-=-2 d
; ; \ , 240
=<_> e‘m(’ Z CN-” Z (_l)Nld n [e’(l—(t\’*?.),'l)le*(l—(’) /4)]
Y t =2n

(B.29)

n=0 l=—x

The sum over / is absolutely convergent, uniformly on compact subsets of
the half-plane Re y > 0, thanks to the rapid decay of e =" ="/ as t - + 0.
Moreover, as y — 0 this sum is dominated by its leading term(s), namely
the one(s) for which |27/ — 6| is smallest.
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Concerning the principal-value integral, we first note that in certain
cases it vanishes by symmetry: If N is an integer, then cos(t/2)/
[sin(#/2)]1V~" has parity (—1)"~'; it follows that the combination

eialUZN_ 0 1()’) + ( —1 )N e—i{/\'—2~a)(!ZN‘ _o. }\'—2—&(),) (B30)

is given exactly by the sum of residues.*® In particular, in two cases
Z v o Lly) itself is given by the sum of residues (B.29):

(a) a=(N-2)/2,68=0, N even:

s 1t

T\ V=2 -
ZN.o.(N-z)/Z‘_‘(_) PRRIEDY W[e‘“‘)] (B.31)

4 n=0 = - 1=2nl

As y — 0, this sum equals its /=0 term (which is of order y ‘¥~ '"2) up to
nonperturbative corrections of order e ="y ~'¥=%2) For N = 2 this reduces
to (B.3).

(b) a=(N-2)/2,0=m, N integer (even or odd):

o

T 1:2 - 7‘\7_2‘. }
Z/\',n.l/\’—2i/2=<;> (_I)‘V_- z CNn Z (_I)AI

n=0 I=—

X _di [ef(l - ﬂ):/4)']

T (B.32)

1=2nl

As y— 0, this sum is exponentially small, of order e ™"y V=32 For
N =2 (resp. N=3) this reduces to (B.4) [resp. (B.5)].

Next let us consider the general case of N real (not necessarily
integer). Symmetrizing (B.28b) around ¢ ==, we find

ixt) imN , — (N ~ 2 — )0
e Zy v Ay)te e’ MLy —ono2-aY)

1 /m\'"2 =
=‘2;(;> j_v_LN(f)

x [eili—(N—Z)/Zilev(lflllzmr+ei(:x_(/\’—2)/2)(2n~l)e‘127r-lfll)3/4)-] dr

(B.33)

where L} (1) is the symmetric part of L,(t) around t=n [cf. (B.26)]. As
discussed in the preceding subsection, L (¢) is supported away from the

**If one makes the change of variables =54z and then uses the oddness of the function
sin(s/2)/[cos(s/2)]1¥~" (for all integers N), one obtains the sunre combination (B.30).

822863413
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interval 0 <t <2z and is the pth derivative of a polynomially bounded
function, where p =max(| NV |, 0). The following lemma then implies that
(B.33) and all its derivatives with respect to y are exponentially small
whenever 60 mod 2z: more precisely, the nth derivative of (B.33) is
bounded by const x y =7+ 12+ 2 =% where

© = min |0 — 27k| (B.34)

keZ
In particular, if a=(N—2)/2 and 0 <6 <2z, then
Re[eM V=202 =RMZ ) v—22(1)]

is O(y~7e~®") as y| 0 (y real). For §=n, this says that Z,, v —2207)
is O(y~re=™").

Lemma. Let L(¢) be a tempered distribution on R, supported on
|t| = O, and define

Fy)=y-"? f’ L(t) e~ d (B.35)

for Re y > 0. Then there exist constants p and C, such that
|F(u)(y)' < C,, |Y| —(p+1/242m) e—al Re(1/4y) (B.36)

for n 20 and (say) |y| < L.

Proof. For some p>=0,L is the pth derivative of a polynomially
bounded function f] ie., | ()] < C(1 + |¢|"). Thus, for each n >0,

o ap a”

PO =(=D7 [ f0z5507 % a (B37)
Clearly
or 0" — /2, — /Ay
iy e
Sconst(n) X(l + |[|p+2") l,},l—(p+l/2+2n)e—/3 Re(1/4y) (B38)

Integrating over ¢ then proves the lemma. ||

Finally, let us consider the cases in which the principal-value integral
(for N integer) or the integral over 0 <t<2n (for N generic) does not
vanish. In these cases we can obtain an asymptotic expansion for Z, , ,(7)
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in powers of y, by the usual method of expanding the integrand of (B.28b)
around its peak at t=46. For 8#0 (mod 2x) the result is as follows:

cos(6/2)
[sin(6/2)]1" !

<1+ {3N—4_< _N-2 2
U 4 *T
) N-2 0 A
—z(a——2—>[tan§+(N—1)cot§]

+wcotzg}+0(yz)] (B.39)

—i{N—Z)()/Zein(N— 1)/242—-N

Zy, 0..7)=¢

This expansion can be proven rigorously by cutting L, (using a smooth
partition of unity) into a part supported on the interval ¢ <t <2m — ¢ (here
we suppose 0<t<2r) and a part supported on the union of intervals
t<2¢ and t>2x—2e The integral over the first interval is then an
ordinary integral of smooth functions, and the asymptotic expansion can
be controlled by standard techniques; while the integral over the second
region is exponentially small by virtue of the lemma above.

An alternative way of deriving these formulae is to use a recursion
formula yielding Z, , , in terms of Z,; in this way, all integer values of
N (=2) can be handled by differentiating the cases N=2 and N=3 with
respect to y, while all noninteger values of N (>0) can be handled by
differentiating one of the cases in the interval 0 < N <2. The basis of this
approach is the simple identity

k(N +k—2)

N =D e (B.40)

M2 k-1 =
[see (A.2)]. It follows from this that

e " d . N-=2\d )
ZN+2.(1.1+.|()’)=m[ —d_y+21 <OL—T>Z@—‘X'] Zy oY)

(B41)

In particular, for a = (N —2})/2 we get

e " d [(N-=2\?
Zyiso /V/z()’)=m[ _d_y_ <T> } Zy, (),(N—z)/z()’) (B.42)
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Clearly, if Zy 4 (v_2(y) is exponentially small together with all its
derivatives, then the same holds for Z , 5, 4 (v +2-_2),2(y) for every positive
integer r.

Remark. The equivalence of (B.10) and (B.42) comes from the fact
that y~ 2=~ is a solution of the heat equation, hence d/dy and
d*/dr* act identically on it; and since these two operators commute, the
same holds true for multiple applications of these operators:

<diy>m <(j_t22>" (},_l/le—(l—(!)l/zty) _ <diy>’”+n ()’—]/26_“_”)2/4)‘)

d2 m+n )
=<[_1F) (},~—I/Ze—ll—(l)'/4;-) (B43)

B.3. The Partition-Function Scaling Function Z\0'(y; B)
Recall from (B.1)/(B.2) that

. L+e 78 l—e 78 _
Z30 B =———Z N+ —5— 230 (B.44)
where
ZE= S (£1) Ay e v (B.45)
=0
Now
/1,\,.,EI(N+1—2)=<I+¥>Z—<¥>Z (B.46)

So the functions Z % are precisely generalized theta functions of the type
considered in the preceding subsection; indeed, they belong to the “simple”
case a=(N—2)/2:
Z;(}’) =€)'(N“2)2/4ZN. 0. (v—212() (B.47a)
Zi(y=e"NT2RZ v nap) (B.47b)

It follows immediately from the results of the preceding subsection that

_l4e®

ZW(y; B) 5

Z3(y)+ O ™Hry =N =32y (B.48)

as claimed.



1D O{N)-Invariant Spin Models 655

Remark. The duality formula (B.3)/(B.4) for ordinary theta func-
tions is a special case of a modular transformation, and is connected with
the theory of elliptic functions (refs. 46, 48; ref. 47, Chapter 13); it also has
applications in string theory.*”’ We wonder whether the corresponding
formulae for integer N>3 are telling us something deep about the
Riemannian geometry of the sphere S* ~'. We are intrigued by the fact that
the generalized theta functions arising from Z3 fall precisely into the
“simple” case a=(N—2)/2—it cannot be a mere coincidence! And we
wonder why there is a convergent duality formula for Z, for all integer N
[cf. (B.32)], but for Z;; only for even N [cf. (B.31)]. Is this perhaps related
to the fact that —Ie SO(N) for N even, but not for N odd? Or to the fact
that the groups SO(N) fall into different families of the Lie classification for
N even and N odd? And can our results be generalized to symmetric spaces
other than SV~ '?

B.4. Some More Generalized Poisson Summation Formulae

To handle the numerator of the susceptibility scaling function, we will
need to study sums of the form Y, .4, . R(k) f(k), where R is a rational
function and fe £(R). Unfortunately, such sums are not covered by the
generalized Poisson formulae of Section B.1: the trouble is that R is typi-
cally not a smooth function on all of R, so it cannot be absorbed into f.
Instead, we shall derive some further generalizations of the Poisson sum-
mation formula, in which R is absorbed into the kernel K.

Let, therefore, R be a rational function of the form

P(x) _ P(x)
O(x) (x+8)-(x+8,)

where P is a polynomial. Let k, be an nonnegative integer chosen large
enough so that none of the §; are equal to an integer < —k,. (That is, R
does not have any poles at integers >k,. When k,=0 we shall omit it
from the notation.) We shall then prove a formula of the form

R(x)= (B.49)

L

1 = 2
Y AR S = [ Komnlt) Ji0) d (B.50)
k =k -
In fact, the derivation is virtually identical to that in Section B.1: We intro-
duce the function

o

Fropadz)= Y My oR(k) z* (B.51)

k=ko
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This series converges in the disc |z| <1, but F. r.,, then has an analytic
continuation to the whole z-plane cut along the ray [ +1, +0).*’ In
particular, the only singularity of Fy. z.,, on the unit circle is at z=1, and
the growth of Fy. ..., as this singularity is approached is bounded by a
polynomial in |1—z|~' We can therefore introduce the distribution
KN: Rika by

K. e t) =lim Fy, g (e +) (B.52)
£]0

and its only singularities are at t =2n/ (/ integer). The proof of (B.50) then
follows exactly as in Section B.1.

If ky=0, then Fy p can be written explicitly in terms of the
generalized hypergeometric function ., F, (defined, e.g, in ref. 37,
formula 9.14.1, p. 1045):

d q
Fy plz)=P <z Z>[<H ﬁi—l> g+ Ff (N B Bs B+ 1, B, + 15 2)

i=1

q
—z? <1‘[ (ﬁ,+2)"> g FAN B +2,, B, +2; 8,43, 8,+3; z)J
= (B.53)

For g=1, this special case of the ,F, corresponds to incomplete beta
functions.

7 This follows {rom rel. 47, Theorem 11.1.3, pp. 41-43, which states the following: Let u be a
finite complex measure on [0, 1], with [x({1})] <p, and let 4, Ej.\'k du( ) be its moments.
Let k| be any integer such that | x*' |du(x)| < p (such an integer always exists). Let G be
an analytic function in the disc of radius p centered at the origin. Let f(z}=3/_, ¢ -* be
a function having an analytic continuation to a domain A which is starlike with respect Lo
the origin. Then the function defined by 3/, G{u,) ¢, =* likewise has an analytic continua-
tion to A,

We shall apply this theorem as follows: Let A be the cut plane C\[ +1, + ). Let
5 k-1
JEr= Y = =)™ 0 ey = Y gl 2f
k=4k, k=0

where we will choose A, later. Let du(x)=dx. so that u, = 1/(k +1). Let

X "
G('\)=<l+(/}-—l)x>

so that Gl )= 1/(k+ f)". To apply the theorem. it suffices to take k&, >|f—1|—1. But
then we can add in by hand” the terms k, <k <k, — 1. provided that none of these values
of k equals —f. This proves the claim for R(x)=1/(x+ f)". A general denominator Q(x)
then follows by expansion in partial fractions, and a general rational function
R(x)= P(x)/Q(x) follows by application of the dilferential operator P(z 8/0z). QED
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We want now to derive some general properties of these functions. Let
us thus introduce

& TNk
f"(/}")—kgo I(N) k!'(k+B)

=f  F (N, B BB+ 1., B+1;2) (B.54)

(Here N is fixed, so we suppress it from the notation.) By making a shift
k— k+1 in the sums, it is easy to derive the recursion relation

N-1
R e PRV RS IE

g—1
—-(N—-1)z IZ B U B+152) (B.55)
n=1

Using this formula, it is easy to get F,. for the simplest nontrivial case

R(x)=1/(x+pB):

. 2 1 HAp+1-N) z)! =N
EJ'“/«M‘B[H f+1 ](1_4)
L(N=1)(N=2-28)
22 2;z .
+ FETn - J(A+za (B

A simplification occurs for f=(N—2)/2: the last term vanishes, and we
have the explicit formula

o -k 2
Mk =
Z(, Mk+(N=2)2 N-=2

k=

(1—z)>~ % (B.57)

In the following we will be especially interested in the value of f,(f; z)
at z= —1. For g=1 a general formula can be obtained for f=(N/2)+
integer. The starting point is Kummer’s formula [ref. 50, p. 107, Eq. (47);
see also ref. 51, p. 50, Theorem 8.6¢]

: (1 —b
JFila byl +a—b; —1)=27"/r— (U +a—b)

(1—b+a/2) (12 +a/2) (B.58)

Setting a =N and b = N/2, we get

F (N NN _1>_J_77LN/2> (B.59)

22 T2V (1 +N)/2)
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so that

_J/r_I(N2)

/i (5’ - >‘7r<(1+N)/2) (B0

Using the recursion relations (B.55), it is then possible to compute
fi{f; —1) for all §=(N/2)+ integer.
In the following we will use two specific functions:

' Sk
(D)= Y Ak S B61
UMI= L v v =z ol (Bol)
o ~k
Viz)= ) = (B.62)

”17\ : 2 2
2 Y e+ (N=2)/2)2 =173

These series are well-defined provided that N#£4,2,0, —2,.. Simple
algebraic manipulations yield

N N ., (N
U‘\,(:)=%[f| <5—2;:>—(:3+1)f| (5;:>+:',<5+2;:>} (B.63)

Using now the recursion relation (B.55) forward and backward to express
everything in terms of f,(N/2; z), we obtain (specializing for simplicity to

z=—1)
8(N—1 . /N
o ()

TIN-2(N—4""\2"
Caw S TUN=4)2)
AT ETT (Bo%)

In complete analogy we can compute V,(—1). Using the recursion rela-
tions (B.55), we get

_I6(N—1)N=3) (N

2-¥ /[ TUN-4)2)
= B.65
(N=2)(N—4) T(N=3)72) (B.65)

Notice that in principle one would expect here also a term proportional to
S{N/2; —1); but for the specific combination which appears in V,(—1),
the coefficient of this term vanishes. Notice, finally, that

(N=2)N—4) V(= 1)=2(N=3) Up(—=1) (B.66)
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A key cancellation in Section B.6 will rely on this identity but not on the
specific values of Uy(—1) and Vy(—1).

B.5. Some More Generalized Theta Functions

Let us now introduce some more generalized theta functions, which

will play an important role in our treatment of the numerator of the

susceptibility scaling function x%y',(y; B). We define, for Re y >0,

. _ e—)'lk+1/\’—2)’2)2

UN. 0 k(l()") = ,‘_;k“ J";\/, l\-e,k” (k + (N— 2)/2)2 1 (B67)
* _ g Mk IN = 22Y

Vi ok ¥) Ekgkn Ny e™ T (V=D 1T (B.68)

Here k,, is an integer; if «=(N—2)/2 is an integer, then we require that
k,>1-—a in order to avoid zeros of the denominators. We will thus take
k,=0 except when N is an even integer <4. When k, =0 we omit it from
the notation.

We remark that the functions Uy , and V , satisfy recursion relations
identical to (B.42).

Applying (B.50) with f(x) = e™e~"~**" we obtain

1 (a\'? = .
UA\/-.U(>')=%<%> j K1) e e = g (B.69)

1/ ,
V,\z,a(;')=£<%> j KW e em R g (BT0)

with the obvious kernels K" and K”. For 0#0 (mod 27) we can then
obtain an asymptotic expansion of Uy ,(7) and V, ,(y) in powers of y,
using the lemma of Section B.2 to control the contribution of the
singularity. At zeroth order we have

lim Uy o(y) = Unle™) (B71)

y—0

lim Vy o(y)= Vale) (B.72)

y—0

and in particular these limits are finite. For § =n we have calculated these
limits in (B.64)/(B.65).
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When 6= n—which we will assume henceforth—much more can be
said. The simplest approach is to use the differential equations

d
<E;+ 1> Un.o:P)=—Zn o n—-22:17)

=—Zyo (N—z)/z()’)

ko=
+ Z ‘/VN.keik(}e~)'(k+(N—2)/2)3 (B73)
k=0
d
d—y+1 Vio:w?) = —=Un 0:4(7) (B.74)

to reduce the problem to known results for Zy . (v 2,2. One can write
immediately the solution of (B.73)/(B.74):

Y ’
UN.(::A»(,(J’)=C’_"UN,(1:k(.(0)—f ey )ZN.(I.(N~2)/2:A-U()’I)dy' (B.75)

0
). ’
Va1V =€ Vi) = [ €777 Uy 1(y') (B.76)

For N#an even integer <4, we can take k,=0 and use the fact that
Zn n n—2,2(y) is exponentially small as y | 0, to get

Uy ()= Uy(—1) e ¥+ exponentially small terms (B.77)
Vi) =[Vy(=1)=Ux(=1)y]e™”
+ exponentially small terms (B.78)

where Uy(—1) and Vy(—1) have been calculated in (B.64)/(B.65).

Next let us treat the case N=4, taking k,=1. We have the initial
conditions U, ,.,(0)=—32 and V, ,.,(0) =+ —n?/24. Using the fact that
Z, .\(y) i1s exponentially small, we get

3
Uy, 0y = < 2 + )!) e~ + exponentially small terms (B.79)
, Lo 3 1,\ .
Vyaly)= E—ﬁ+2y—§y’ e~ +exponentially small terms  (B.80)
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Finally let us treat the case N=2, taking k,=2. We have the initial
conditions U, ,.,(0)=1and ¥V, ,.»(0)=n?/12 — 3. By the same logic we get

1
Us .oly)=1— <—2- + 2y> e~ 7+ exponentially small terms  (B.81)

3 1
Y
Voral) = = 1+ (T g 45047 -

+ exponentially small terms (B.82)

Formulae (B.79)—(B.82) can alternatively be derived from (B.77)/(B.78)
and (B.64)/(B.65) by taking the limits N — 2, 4 starting from noninteger N.

B.6. The Susceptibility Scaling Function x\'’(v; B)

Now we want to prove a formula for the numerator of the suscep-
tibility scaling function x'(’,(y; B)—that is, for the sum appearing in
(4. 79)—analogous to that proven in Section B.3 for the partition-function
scaling function Z')(y; B). We conjecture that such a formula is true for all
even k, but we shall prove it here only for k =2. We define

ke e YANI

Xﬁ.k(y)z Z ( ) (g,Tv k. /,,,Z_ (B83)

L.m=0 Nilom

(Note that the properties of the Clebsch-Gordan coefficients guarantee
that, for k even, / and m in this sum have the same parity. In particular,
Ay 1 m=AN.m—An.s, independent of B.) We shall prove that X3 ,(y) is
exponentially small as y | 0, so that the numerator in y%’,(y; B) becomes

simply

l4e 78 .
Y X% ,(y)+ exponentially small terms (B.84)

VN2
From this and (B.48) it follows immediately that

2 X;?(})
V.2 YZ 5 (7)

15 (y; B) = + exponentially small terms (B.85)

In particular, x'y’,(7; B) is independent of B modulo exponentially small
terms.
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We start by rewriting X 5 (y) as™

Xy o) = i (_1}1[(6/7\';2_/./+2_(6/7\7;2.1./~2J POy

1=0 AN:/./+2 A/\’:lfll

Z (=1 @32, 07 (B.86)

I\.)I\-'

where we set %3,
separately.

Let us suppose first that N 3 2, 4. For the first sum in (B.86), using the
formula (2.41), we get

5 _2=0if I=0,1. We shall deal with these two sums

NIN+2) v > -
—16 eV ’42 (—1). ¥y

I=0
o (N—3)(/+(N—2)/2)3 —N3/2+2N—1
[(/+(N=2)2)*—1]"

oYU FIN = 2)2)

_MN+2) «\m<_ 4 N, _> ,

We can then use (B.77)/(B.78) to get

_N(]\3/7+2) N =2 4[ N 4) V\'(_l) (N—3) U,\r(_l)

—(N=2)(N—-4)yU,(—1)] +exponentially small terms  (B.88)
Using the identity (B.66), we finally get
N(N—4)(N3>—4)

32
+ exponentially small terms (B.89)

N =DM (1)

¥ In the final term we have /=, and s0 we must use the comment in footnote 39 1o resolve
the ambiguity in (4.79).
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For the second sum appearing in (B.86), using (2.42) we get

N*—4

: ye}.(,\z_z)l/f* Z (—l)ld‘/,v./

=0
(I+(N=2)/2)’ —((N—-2)/2) .
(I+(N—2)/2)*—1

N -4 ) d (N—2\
_ orN—22a| @4 YT < (y )
e [ & ( : )}U,\_m) (B.90)

— U+ (N —2)2)2

Using (B.77), we get

N(N —4)(N*—4)

UMD

+ exponentiaily small terms (B.91)

Collecting together (B.89) and (B.91), we conclude that X ,(y) is
exponentially small as y | 0.

Next let us discuss the case N=2. Here 43, ,,,,=2,%3,,,_,=2
for 122,45, ,,=0forl#1, and 43., , ,=2. Thus

X?:Z(y)zé_‘lle_r_ye_y_%Uln:Z(y) (B92)

so that, using (B.81), we get that X5 .(y) is exponentially small.
Finally, for N =4, using (2.41), we can write

= %35 , %3, . 9
Z (_l)/[ 4:2.071+2 4.-././—2:| e—)‘44.l=.§e*)'+%U4‘n:l(},) (B93)
1=0 £

Ad:l.l+2 A4:If2.l

while from (2.42) we get
Y (—1)/ 42, ,,e 7 = =343 72 (y) (B.94)
=1

As Z; (y) is exponentially small, it follows from (B.79) that X ,(y) is
exponentially, small.

APPENDIX C. LARGE-N LIMIT

In this appendix we discuss the N — co limit of the finite-size-scaling
functions for the one-dimensional N-vector universality class. We will first
discuss the derivation using the standard large-N formalism; then we will



664 Cucchieri et al.

show in two particular cases (the spin-1 and spin-2 susceptibilities) how to
recover these results through a direct evaluation of the N — co limit of the
expressions given in Section 4.2.2.

C.1. Review of Results from Standard Large-/N Formalism

Let us thus start with the standard large-N formalism.'*>’ Consider, on
a one-dimensional lattice of length L with periodic boundary conditions,
the standard N-vector Hamiltonian

%({0’})=—JZG.\.'6_\.+| (Cl)
and the partition function
Z=[ge " ieD (C2)

As is well known, the N — oo limit must be taken with J/N fixed. We will
therefore introduce a rescaled coupling J = J/N. It then turns out?’ that in
the N— oo limit all correlation functions can be expressed in terms of a
mass parameter m, which is related to the coupling J by the gap equation

(C.3)

where p =2zn/L, the sum runs over n=0,.., L— 1, and p =2 sin(p/2). The
summation in (C.3) can be performed exactly, and thus one gets

- 1
J=————=coth (L arcsinh %) (C4)

my/4+m;y

We can now take the limit N — co at fixed J=J/N and fixed L. All the
two-point correlation functions (and indeed all the correlation functions)
can be easily computed:'®?’ the result is

G s, T; L) (1 O >k
vl L L) ==Y 5w (C5a)
K LS B+ my

__cosh*[ (L —2x) arcsinh(m /2)]
~ cosh*[ L arcsinh(m, /2)]

for 0<x<L (C.Sb)
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From this expression one immediately gets for the susceptibilities

1

o iJy LY = —=—— Lé S+ - C.6a
X ./\( (JL)A plmz"pk (pl pl\) ’I:[l p? +’nL ( )
L1 cosh*[ (L — 2x) arcsinh(m, /2
_5 cosh LU resinh(m, /2)] (C6b)
2o cosh”[ L arcsinh(m,/2)]
For k=1, 2 one gets simpler expressions:
- 1
Ao (3 L) === (C7)
Jmy
~ 1 ¢ 1 m
w.oAT; Ly = [ coth (L arcsinh —L>] (C8)
* J‘amL mp/4+m7j 2

Analogously one can compute the correlation lengths. For example, in the
spin-1 channel we get

- 1
T Ly =— (C9)
my
Having taken the limit N — oo, J — oo at fixed J=J/N and fixed L, we
can now take either one of two further limits:

(a) The standard infinite-volume limit L — o at fixed J. This limit is
trivial and corresponds simply to the substitution of all sums by the corre-
sponding integrals and the parameter m, by m . . In particular, the gap
equation becomes

..._J”’ dp 1 _ 1 (C.10)

Bl —n£ﬁ2+’";_mc,_,1/4+mi‘

(b) The finite-size-scaling limit L — o0, J— o [hence &— o] at
fixed é/L. From (C.9) we immediately see that this corresponds to con-
sidering the limit L — oo, m,; — 0 with m, L = p fixed. The variable p is the
natural one in the finite-size-scaling limit of the N = oo model, and all the
finite-size-scaling functions will be expressed in terms of it.

Let us first derive the FSS function for the correlation length £2°¢.
Equating the right-hand sides of (C.4) and (C.10) and taking the limit
m, —0,m; -0, L—> o with p fixed, we get

EaL)  mg P
- = — -11
"“d)(oo) m, tanh 2 (C1D
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All the other FSS functions can be computed analogously. For the spin-1
and spin-2 susceptibilities we get

£ = tanh? (C.12)

X oL) tanh?2 42 sinh( p/2)

1o o) B S s (p2) (C.13)

C.2. Alternate Derivation from Hyperspherical-Harmonics
Formalism

Let us now compare our results with those of Section 4.2.2. In that
section we took first the finite-size-scaling limit L — co, J— oo at fixed
y=LA(JY~ L/(2J) and fixed N; now we want to take the further limit
N— o0, y— 0 at fixed = Ny.** We want to show that we recover the same
results as in the preceding subsection; in other words, we want to show
that the two limits commute.

We need first to find the relation between % and p. This is easily
obtained if one considers in (C.4) the limit J— oo, L — o0, m, — 0 with
= L/(2]) and p fixed. We get

i
Zcoth2 (C.14)
p 2

=i —

Let us begin by computing the limit & — oo, y > 0 at fixed j= Ny of
the partition-function scaling function
2O =Y e (C.15)

1=0

[cf. (4.77)]. Since y is tending to zero, it is natural to apply the generalized
Poisson summation formulae of Appendix B. Using (B.28c), we get

Z(\tf)b(}y)=_i<ﬂ>l/z N eXp[ﬂN_z)z]
/ AN

2y N-=2 4N
E AR - ! 2-N

xj dr te =V [ _2j sin = (C.16)
— i 2

* This is clearly the correct scaling. since y x Lj(2J) = L/(2NJ).



1D O(N}-Invariant Spin Models 667

where ¢>0 is arbitrary (the integral is independent of ¢). The large-N
asymptotic expansion of this integral can be obtained by the standard
saddle-point technique. We rewrite the integral as

+ ¥ +in ! 2 »
{ A (1!!(—2isin§> N (C.17)
with
_ 2j sin & C.18
f(t)__i},_ og| —2isin3 (C.18)

We must now find a saddle point, i.e., a solution of f'(¢) =0 with Im ¢ > 0.
We find 7 = ip, where p is the unique positive solution of (C.14). Expanding
around the saddle point, we get

IRV A SN . t 2 VA
J drt —2zsm; e

s +ir =

2 2 12
:fp<2sinh§> e'\/f"ﬂ’(-ﬁn%ip)) {1+0<%>} (C.19)

Collecting everything together, we get

~ /N 1 =
Zoy =L
v 2! [4)7+851nh‘(p/2)]

sz N)'; 5 p>2 N < 1 >
—_—+— 2 = 1+0(= 2
xexp< 4 + 2 >< smh2 + N (C.20)

In order to compute the large-~ behavior of the finite-size-scaling
functions for the susceptibilities, we must also evaluate the large-N
behavior of more general sums of the form

Y K R(k) etk n2r (C21)

k=0

where R is a.rational function of the form

P(x)
R(x)= C.22
{x) 0 (x+B,) { )

and P(x) is a polynomial. The coefficients of P(x) and the f, are in
general N-dependent. These series can be handled using the generalized

82286 3-4-14
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Poisson summation formula (B.50). As an example let us determine the
large-N behavior of the sum

R S
MKk + N2 + )

k=0

e—f[k+<N—2)/2)]3/N (C.23)

The N-dependence of the denominator is the one which appears in the
finite-size-scaling functions of the susceptibilities. We want to compute
its large-N behavior for o« and § fixed. Using (B.50) with f(x)=
exp[ —(J/N)(x + (N —2)/2)*], we can rewrite the sum as

V2 ohoe i
_1_ <”N> J rdt /N = 21/2, — NEAAT)

2n j" — o+ i

x[ﬁ,<a+%[;e">—e’” <oc+2+]2V >] (C.24)

where f,(f8; z) is defined in (B.54). In order to compute the limit N — co of
the integral we must discuss the large-N expansion of f (a 4+ N/2; z). The
leading order is easily obtained if one notices that it is independent of a. In
this case one can use the recursion relation (B.55) to compute it. For g =1
we get for N— o

N 2 -N_ E.- L
i <a+—2-,z>=ﬁ(1 )! /j]<1+cx 2,4>+0<N2> (C.25)

from which
N\ 2(=z'"" 1
fi <“+5’z>“N—1+z [1+0<N>] (C.26)

A similar formula, which can be proved by induction, is valid for generic ¢:

N\ /2\(=zp¥ 1
f,,<oc+5,4>—<N) Nre [1+0<N>] (C27)

Using this expansion, one can rewrite (C.24) in the limit N —» o as

AN\ (2N pr v 1 —e™\¢ N/
_—< ),> (ﬁ) J_‘“,-,; dtsmt<1+e,,> e (C.28)

where f{(r) is given in (C.18). The large-N expansion of the remaining
integral is then obtained by using the same method as used for the parti-
tion function. We get finally
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o 1 . 2
ootk (N=2WYN
gﬂ -/11\/_/\- (k+N/2+o()" e (C29)

__~,—l/-(_2_>(lex (Np2> l_{_;]—l/z
7 \W) PP\ )| 45T 8sinn(p)2)

. AN o\ 1
x(smhp)<tanh5> <2 smh§> [1+0<N>] (C.30)

Generic sums of the type (C.21) can be handled exactly in the same
way using the generalized Poisson formula (B.50). In this case what one
needs is the large-N behavior of the kernel F..(z). To get explicit
formulae we must specify the N-dependence of the coefficients ;. We will
assume ff; = N/2 + «;, which is the dependence of the sums appearing in the
finite-size-scaling functions of the susceptibilities. Using the fact that the
generic kernel is obtained by summing and taking derivatives with respect
to z of f;,, using (C.27) we see that generically the large-N behavior of
Fy. r(2) is given by

Fy. q(2)=N"(1—z)"V F(z)[1 + O(1/N)] (C31)

where F,(z) is a rational function of z independent of N, and p is an
integer. Then we obtain the general formula

o

Z Ny kR(k) ef;“-[k+lN—2)/2]3/N

k=0
sz 1 1 —1/2
— 7—I/2Np . _ .
7enres () [4&* 8 smh~<p/2>]

-N
x (sinh p) Fe(e™") (2 sinh 52’-> { 1+0 (%)] (C.32)

Thus the whole computation boils down to the computation of Fy(z).

In some cases it is possible to simplify the computation by using a
relation between the large-N behavior of different series. Indeed let us
differentiate (C.32) with respect to 7. Keeping only the leading-N contribu-
tions, we get

3 N 2 3 2y/272
Z Vi« R(k) <k+_2—> o~ Lk + N =220/

o

N, 2 SO A 21212/ 1
__ 4;’2 (AZ Ny o R(k) =TT+ 1N =221 N>[ 140 (N)} (C.33)

¢ =10
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where we have used the relation (C.14) to eliminate the terms proportional
to dp/dy. In the large-N limit we can of course substitute (k + (N —2)/2)?
by (k + N/2 + a){(k + N/2 + f), where o and f are arbitrary. Thus we get the
relation

- N N 5 7 33242
S Ay R(K) (k +3+a><k+;+/)’> g T TR+ N = DN

k=0

_ Np 2 e - )_7~.[k+1,\’-2)/213/\') <_1_>
_<2)~'> <Z Wy Rk e 1+0( (C.34)

k=0

This formula will allow us to compute the large-N behavior of the sums
appearing in the numerators of the spin-1 and spin-2 susceptibilities.
Let us start with the spin-1 case. Using (2.39), we get

e VAN

2
Z % Nillom A
Nilom

L

N(N-3) . e AN
= Ay .
4 ; N4+ N2 =1/2)(1+ N2 —3/2) (C33)
Using (C.34) with a = —1/2, f = —3/2, we get
Y %3 "_m_'=<l~'>22"“(;v)[1+0<l>] (C.36)
=~ SN L A‘\':/. ” ,D N N -
and thus
7\ 2P
R(;;”,.l()')=<;> = tanh 3 (C.37)

which coincides with (C.12).

In order to evaluate the large-N limit of the finite-size-scaling function
for the spin-2 susceptibility, we need to evaluate the series {(B.67) and
(B.68). Using again (C.34), we get

s . 1
z .f|’,\r_k [(k+(N_2)/2)2_ l]r/

k=0
2)-; 2y A .. , .~y 1
=| — L‘/:l 3 ISR i 1 N '
() (2, J+o(w)] e

—FlA H(N —2)2]0N
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Then using (B.86), (B.87), and (B.90), we get

e~ VAN

s
2
Z (g/\’; 2.0Lm A
N:lm

LLm=0

_N 22, 7L | s, 1
=7 tanh 2+2cosh2(p/2)} ZY(yy| 1+ 0 N (C.39)

and thus

2P 7 1
R _(y)=tanh? Pyl

o2 272 cosh?(p/2) (C.40)

Using (C.14), one immediately sees that {(C.40) agrees with (C.13).
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