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We solve exactly the general one-dimensional O(N)-invariant spin model taking 
values in the sphere S N- ~, with nearest-neighbor interactions, in finite volume 
with periodic boundary conditions, by an expansion in hyperspherical har- 
monics. The possible continuum limits are discussed for a general one-parameter 
family of interactions and an infinite number of universality classes is found. For 
these classes we compute the finite-size-scaling functions and the leading correc- 
tions to finite-size scaling. A special two-parameter family of interactions (which 
includes the mixed isovector/isotensor model) is also treated and no additional 
universality classes appear. In the appendices we give new formulae for the 
Clebsch-Gordan coefficients and 6 j symbols of the O(N) group, and some new 
generalizations of the Poisson summation formula; these may be of independent 
interest. 
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1. I N T R O D U C T I O N  

The purpose of this paper is to study the continuum limits and finite-size- 
scaling functions in a general class of one-dimensional O(N)-invariant spin 
models (also called nonlinear a-models). Despite the relatively trivial 
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nature of physics in one dimension, this exercise is interesting for several 
reasons: 

1. Two-dimensional nonlinear a-models are of direct interest in 
condensed-matter physics, and they are of indirect interest in elementary- 
particle physics because they share with four-dimensional gauge theories 
the property of perturbative asymptotic freedom. ~t 4~ In particular, recent 
work~5 7~ combining Monte Carlo simulations and heuristic analytic 
arguments has suggested the possible existence of new universality classes 
for the two-dimensional O(N)-invariant lattice a-model with mixed 
isovector/isotensor action. The present work was motivated by the idea of 
investigating the occurrence of analogous universality classes in the one- 
dimensional case, where an exact analytic treatment is possible. 3 

2. A second motivation was to perform the computation of an exact 
finite-size-scaling function (as well as the leading correction to it) for a 
nontrivial spin model. Finite-size scaling has become increasingly impor- 
tant in the analysis of Monte Carlo data. ~'~''~ (For  example, the functions 
derived in this paper can be used for comparison in the multigrid Monte 
Carlo study of the one-dimensional O(4)-symmetric nonlinear a-naodel. ~ "~) 
Moreover, finite-size scaling is the basis of an important new method for 
extrapolation of finite-volume Monte Carlo data to infinite volume. ~ ~31 It 
is also useful to know something about the corrections to finite-size scaling. 
In particular, in the new methods for extrapolation to infinite volume, it is 
crucial to understand the corrections to finite-size scaling because they 
induce systematic errors in the extrapolation. 

3. Finally, our solution method makes use of the functions defined by 
the generalization of the usual spherical harmonics to the N-dimensional 
unit sphere S N I, which we call hyperspherical harmonics. Although these 
functions are well known, ~4 ~9~ we were unable to find any convenient list 
of their properties in the literature, and therefore we thought that it would 
be useful to make a compendium of the relevant properties and formulae. 
In particular, we were unable to find the Clebsch-Gordan coefficients 
anywhere in the literature (although they, too, are probably known). Using 
the representation of hyperspherical harmonics as completely symmetric 
and traceless tensors, 4 the computation of the Clebsch-Gordan coefficients 
is a straightforward combinatoric exercise. Indeed, we can go further 
and compute many of the 6 - j  symbols. We believe that hyperspherical 

We thank Erhard Seiler for the suggestion to do this. 
4This representation is of course well known, but it is not (so far as we know) employed in 

any of the standard treatises on hyperspherical harmonics. As we shall show here, this 
representation is an extremely convenient one: one of the purposes of this paper is to make 
some advertising on its behalf. 
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harmonics constitute the most efficient approach to the derivation of high- 
temperature expansions for O(N)-invariant spin models taking values in 
S N -  ~. Indeed, they have been used for this purpose by the King's College 
group t2~ and others, t25-~-7~ but the methods were cumbersome, in part 
due to the lack of convenient expressions for the Clebsch-Gordan coef- 
ficients. In addition to the work reported here, we have recently used these 
methods to make significant extensions of the high-temperature expansions 
for various two- and three-d imens ional  O(N)-invariant spin models. The 
technique is explained in refs. 28 and 29, and applications can be found in 
refs. 29-31. The method can also be extended to U(N)-invariant spin 
models, such as the general C P  N -  I model j331 

This paper is organized as follows: The hyperspherical harmonics are 
introduced in Section 2, where we also explain how they are used in the 
expansion of the Gibbs weight exp ( -  :Jt~). In Section 3 we give the exact 
solution for the general one-dimensional S N- I a-model in finite volume, as 
well as its infinite-volume limit. All expressions are written in terms of the 
normalized expansion coefficients VN.I (which generalize the well-known 
v=tanh  J for the Ising case N =  1). In Section 4.1 we discuss in detail the 
possible continuum limits for one-parameter Hamiltonians by performing 
the large-J (i.e., low-temperature) expansion of V,v./(J), and we show the 
appearance of infinite families of universality classes. The finite-size-scaling 
functions and the corresponding corrections to finite-size scaling are given 
in Sections 4.2 and 4.3, respectively. Finally, in Section 5 we analyze a class 
of two-parameter Hamiltonians--which includes, among others, the mixed 
isovector/isotensor model studied in refs. 5-7--and we show that no 
additional universality classes appear beyond the ones already found in 
Section 4.1. In Appendix A we provide proofs of various properties of the 
hyperspherical harmonics, including the Clebsch-Gordan coefficients and 
some of the 6-j  symbols. In Appendix B we analyze the finite-size-scaling 
functions for a one-parameter family of universality classes that includes 
those of the mixed isovector/isotensor model; this analysis is based on 
generalized Poisson summation formulae applied to some generalized theta 
functions. (We think these formulae may be of independent interest; as 
far as we know they are new.) In Appendix C we study the limit N ~ oo of 
the finite-size-scaling functions for the standard N-vector universality 
class. 

Note Added. We have recently received a preprint of Seiler and 
Yildrim 134~ that extends our study of the continuum limit to an n-parameter 
family of Hamiltonians generalizing the mixed isovector/isotensor model. 
Their conclusions are similar to ours. 

822/86i3-4-9 
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2. HYPERSPHERICAL H A R M O N I C S  

The purpose of this section is to introduce the hyperspherical har- 
monics, which will give the basis for expanding the Gibbs weight e -  ~' for 
our spin models. From the mathematical point of view this is connected 
with doing harmonic analysis on the unit sphere S N- ~ c g~U acted on trans- 
itively by the compact connected Lie group SO(N)J 36~ More precisely, let 
us consider: 

�9 o - ~ S  u - I  

�9 R E SO(N) 

�9 the normalized rotation-invariant measure dg2(~) on S N- ' 

�9 the (complex-valued) square-integrable functions f ~ L2(S N- t ) 

�9 the unitary representation T(R) of SO(N) on L2(S N - ' )  defined by 
(T(R)  f)(t~) = f ( R  - '~) .  

Then we want to find an orthogonal Hilbert-space decomposition of 
L 2 ( S  N -  1) into subspaces such that the representation T(R) restricted to 
each subspace is irreducible. The needed decomposition turns out to be 
precisely the decomposition of L 2 ( S  N - I )  into eigenspaces of the Laplace- 
Beltrami operator s =SYsu-,. 5' 6 In fact, it can be proved that (see ref. 36, 
Theorem 3.1, pp. 17-19): 

(a) The eigenvalues 7 of s are 

2N, k = k ( N  + k -  2) >~0 (2.1) 

5 The Laplace-Beltrami operator on S 'v- i can be defined as follows: Define on R N the vector 
fields ("angular-momentum operators") 

Then the restriction to S '~'- ~ of each L :/~ is a vector field on S N- ~, and 

3" =- ~ L ~P L ~/~ 
I <<.~<fl<~N 

is the Laplace-Beltrami operator on S N- ~. 
6 We remark that, for N >/3, L, ~ generates the algebra D(S x - I  ) of SO(N)-invariant differential 

operators on S 'v-L [For  N = 2  this is not the case, because 0/00 is an SO(2)-invariant 
differential operator not belonging to the algebra generated by Z/~. But if we consider dif- 
ferential operators invariant under O(N) instead of SO(N), then the assertion is true also for 
N = 2 . ]  

7 Note that our 5/) is the negative of the usual Laplacian, i.e., it is a positive-semidefinite 
operator. 
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where k = 0, 1, 2 ..... The  cor responding  eigenspace EN. k has dimension s 

N+ 2 k - 2 F ( N + k - 2 )  
~V'v k - d im EN" ~ -- k!  F ( N -  1) (2.2) 

and can be given several equivalent descriptions: 

(i) EN, k consists of the restrictions to S N-  ~ of the harmonic polyno- 
mials of degree k on [~N (namely, the homogeneous polynomials of degree 
k that satisfy Laptace's equation on RN). 

( i i )  EN. k is spanned  by the functions f ( a ) =  (a. ~)k with a e C u and 
~ - ~ A  r "~ 

s=laT--O. 

(iii) EN, k is spanned by the completely symmetric and traceless tensors 
Oc I . . . r  k Yu, k (@) of  rank k, as the indices ~ l ,  ~2 ..... c(~ range over the N k al lowable 

values. 9 (These tensors are described in more  detail below.) Of  course, since 
~1 �9 " ' Ctk in general N k > d im EN. k, the YN, k (tT) form an overcomplete set. 

(b) Each eigenspace EN. k is left invar iant  by T(R). Moreover ,  for 
N>~3 the representat ion T(R) r EN, k of SO(N) is irreducible. ~~ 

For a proof see ref. 36, Exercise A.5(i) (pp. 74, 552}, and ref. 15, Lemma 3 (p. 41. See also 
Appendix A.I below. U stmlly we are interested in the case N>/3, for which formula (2.2) is 
unambiguous.  But (2.2) is also valid for N =  1, 2 if it is interpreted as an analytic (in fact 
polynomial) function of N lbr each fixed integer k i> 0. Thus. for N = 1 and N = 2 we have 

N + 2 k - 2 F ( N + k - 2 )  
~ l ; . k ~ d i m E i . k = l i m  - -  

X~l k! / ' ( N -  I) 

= { ;  for k = 0 , ,  

for k i> 2 

and 

N + 2 k -  2 F(N + k -  2) 
. Q, k -= dim E2. k = Jim - -  

,v-2 k! F ( N -  I) 

={12 for k = 0  
for k>~l 

Note also that ~l~v.,= I and . I~v ' 0 = N  for all N. 
"The  functions (a .  ~r} k used in description (ii) above are linear combinations of the Y's [see 

Eq. {2.3)], namely 

(a '~}k=p,v. lk ~ a,, ...a~, Yu. k (~) 

Tile condition Zff ,  i a~ = 0 ensures that the "Traces" in (2.3) make no contribution. 
"J For N = 2 the group is Abelian, and the spin-k representation for k/> 1 decomposes into the 

two irreducible representations e +~k~ However, if we consider O(N} rather than SO(N), 
then the representation is irreducible also for N = 2. 
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(C) L2(SN- ' )  = '~*=o~'~'~ EN.k (orthogonal Hilbert space decomposi- 
tion). 

To make all this concrete, we can write 

Y~,.~. ~'*( ~ ) = /1 N ,  k (  O ' ~  " " " O'cxk - -  Traces) (2.3) 

where 6 e S A'- ', "Traces" is such that y~..,.~k(o) is completely symmetric 
and traceless [namely tl J ~  YN, k (~) = 0  for any i # j ] ,  and 

2kF(N/2 + k)] 1/2 
j (2.4) 

Explicit examples are 

Y^, o(r = 1 (2.5) 

Y~,. ,(~) = ~/-Na ~ (2.6) 

=/, f iN(  2 ) (  1 ) yN. 2(~ ) = N +  a~aa_  ~ 6 =  a (2.7) 

,B; ~ N ( N + 2 ~ ( N + 4 )  
YN, 3(6)  = 

x [  cr~~ 1N+2 "(J~/~a~'+6~'a/'+a/~Ya~)] (2.8) 

y'/~',~t,,~ ~ N ( N + 2 ) ( N + 4 ) ( N + 6 )  
N' 4 'v '  = 24 

[ 1 
x a~a/~ara'~-- N +-----4 (6~/~a~'a'~ + 5 permutations) 

' ] 
+ (N + 2)(N + 4) (6~/~6r'~ + 6~rj/~,~ + 6~,~6/J,.) (2.9) 

[The general formula is given in Eq. (A.17).] We note that for N = 3  the 
Y's are linear combinations of the usual spherical harmonics, and 
dim E3./,. = 2k + 1. Similarly, for N = 2 the Y's are linear combinations of 
cos kO and sin kO (or equivalently of e _+;,o), and dim E,_. k = 2 for k >~ 1. For 
N =  I, YN. k vanishes for k >/2, while YI. 0 = 1 and Yr. t = a. 

'~ The usual sunanaation convention will be used in this paper from now on. 
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The normal izat ion/~,  k is chosen so that the following orthogonality 
relation holds (see Appendix A.2): 

f d O ( ~ ; )  Y / ~ . ) / s ' ( 6 ) - ' s  P '  .... *;P'"'/~* (2.10) Y~,V,~'*(6) - -  t " k l  N.  k 

where r~ .... ,:/h.../s, is the unique orthogonal projector onto the space of ~ N , k  

completely symmetric and traceless tensors of rank k, defined by the 
following properties (see Appendix A.3): 

1. 

2. 

3. 

4. 
traceless tensor TN, k. 

AS special cases of condition 4 we have 

Complete symmetry in the indices ~ and in the indices ft. 

Symmetry under the total exchange ~i ~ fl; for all i. 

r~, .... *:/~'"'/~*=0 for any i ~ j .  oti,~j" N ,  k 

I ~ " ' ~ * : [ l l ' " f l k T I h  " "& 21 ""~k N.* --N.~,- = TN. k for any completely symmetric and 

I N . k = I N , ~ :  (2.11) 

and 

~ ' I " '~k ; f l l ' " f l / , "  y/~.../~kl'6) ~, . . . .  , I N . ,  N.k ~ = YN,  k ( ~ )  

For example, we have 

p :  Is = 6~ls 
N , I  

(2.12) 

(2.13) 

(2.14) 
p.~:/~./s2_ 1 (6~,/s~6~,/~, + 6~,m6~,/s,) 1 6~,,~,6/~1j, - 

N,_  - X r  

i~,~,~:l~,m_ m _ 1 [ 6~,/s,6~,./s,6~/s, 6~,ls,6~,m~,/j ,  6~,lj,c~,/s,6~,ls , 
N .  3 - - 6  - " "dr -  . . . .  71- . . . .  

+ 6~llhf~'-IS36 ~ lh  + 6~tl~36~alS'-6 ~31h + 6~llh6~z/h6 ~311"~ ] 

1 _ _  [ 6~,~,-( 6/s,/~,-6~3m + 6Is, m6 ~.'/~2 + 6/~'-/~6 ~3/~, ) 
3 ( N +  2) 

+ 6~'~3(6/J'/~'-6 ~'-/~3 + 61~,/~6 ~'-m- + 6m/s.~6~'-/~) 

+ 6~,.~(6/s,/~,_6~,/~ + 6/h/~6~,/~,_ + 6mm6~,/h ) ] (2.15 ) 

[The general formula is given in Eq. (A.27).] The trace of this operator is 
given by [see (A.35)/(A.36)] 

I N, . . . .  k: ~,, . . . .  * = JV'N. k -- dim EN,/,. (2.16) 
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as of  course it mus t  be. W e  r e m a r k  tha t  

yN.k(~) . yN, k(~ ) ~ y~).-/-:k(~) y~j. . i . : ,(~) 

is independen t  of  g [ b y  O(N) invar iance] ,  and  hence 

YN. I,.(~)" YN. k('~) = ~A~,. k (2.17) 

by (2.10) and  (2.16). 
As s ta ted in the theorem given at the beginning  of  this section, the 

hyperspher ica l  ha rmonics  are a comple te  set of  funct ions on  L2(S N- i). 
Thus  any funct ion f ( ~ )  can be expanded  as 

f ( ~ r ) =  Z f~" . . . .  k ~, . . . .  YN.I; (~) (2.18) 
k = O  

where 

f ; '  .... ' = I dO(x) f ( , )  Y;~.k ~(x) (2.19) 

F o r  smooth  funct ions this expans ion  converges  very fast. Indeed,  i f f(cr)  is 
infinitely differentiable,  then for k ~ c~ the coefficients of  the expans ion  go 
to zero faster than  any inverse power  of  k (see Append ix  A.4). 

The  completeness  of  the hyperspher ica l  ha rmonics  can be expressed 
th rough  the re la t ion ~2 

~'. ~' . . . .  * ~' . . . .  ~(~) = 60;,  x) (2.20) YN.k (~) Yu.k 
k = O  

where the 6-function is defined with respect  to the measure  dD(~). 
Final ly,  let us cons ider  an invar iant  funct ion of  two "spins" ~, T e 

S ~ '-  ~, i.e., a function of  ~ .  x. ~3 We wan t  now to compu te  its expans ion  in 
terms of  hyperspher ica l  harmonics .  Us ing  Schur 's  l emma  (see Appen-  
dix A.4), we can write 

,y_ 

f ( a ' x )  = ~ FN., YN.k(~)" YN.k(X) (2.21) 
k = O  

12 Note that the normalization here follows directly from the one defined for (2.10). 
13 For N= 2 there are functions of a, ~ which are SO(2)-invariant [but not O(2)-invariant] 

and are not functions of ~. r: namely, they can depend also on ~ x t. We are not interested 
in such functions. 
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We can drop  the "Traces" terms of  either one of  the Y's in the scalar 
product  above, since the other  Y is traceless. Also, since the scalar product  
is rotat ionally invariant, we can rotate ~ to w = ( 1 ,  0 ..... O) and corre- 
spondingly rotate  ~ to some p with ~" z = w" p = p ~. In this way we obtain 

YN, k(O)" YN.k(X)= YN, k(W)" YN, k(P) 

: lU N, k Hlal w a k Y N ,  k ~xk(~) l . - . I  "'" ~'~"" =PN,~'YN.k (P) (2.22) 

| . . .  
Now YN. kl(p) can be expressed in terms of  Gegenbauer polynomials 
(ref. 37, pp. 1029-1031) (this corresponds to the relation between Y/0 and 
Legendre polynomials  for the usual spherical harmonics)  as (see 
Appendix A.2)|4 

, . . .  XN, * ~*r N/2 - ,( p , )  
YN'kI(p)--IIN. k cN/2-  I(1) (2.23) 

and therefore 

c N / Z -  I ( (~ .  ~ )  
k YN k(ff) " YN k("~) = ~A#N k N/2-l (2.24) 

�9 ' " C k (1) 

In particular, for w - ( 1, 0 ..... 0), we have 

Yt '(w) JV^" k (2.25) N,k 
/-L N.k  

F r o m  Eq.(2.21),  using the or thogonal i ty  relations, the rotat ional  
invariance of  the measure, and Eqs. (2.17) and (2.24), we get 

f t'-N/2- ,(p, 
FN , =  df2(p) f (p l )  ~k ) �9 I ' ~ N / 2 - - ' ( 1 )  

~ k  
(2.26) 

H For N= 2 thi~ relation is singular, since C~ 0. This singularity is due simply to the 
normalization convention of the Gegenbauer polynomials, and indeed the limit N--* 2 is 
well-defined. The result is simply 

C~ '/-'- '(cos 0) T~.lcos 0) 
lira = cos kO 
N--2 CkW2 - I( l ) Tt-( I ) 

where Tk[O) are the Chebyshev polynomials of tile first kind [see refi 37, formulas 8.934.4 
(p. 1030) and 8.940.1 (p. 1032)]. 
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Now the integrand depends only o n  p l and we can integrate out the other 
coordinates. We finally get 

FNk=. ~N--I~N fl_l dt(1 --t2)(N-3)/2f(t)  (-'N/2~/,_Cff/2-1(t)-1(] ) ( 2 . 2 7 )  

where ~N is the surface area of the N-dimensional unit sphere: 

2~,vn 
5% = - -  (2.28) 

F( N/2 ) 

From the general properties of the hyperspherical harmonics we can derive 
the following properties of the coefficients FN.k (for the proofs of proper- 
ties 1 and 2, see Appendix A.4): 

1. I f f ( t )  is positive Is for t e  [ - 1, 1], then IFN.kl <FN.o for all k :/:0. 

2. I f f ( t )  is smooth (i.e., C~-'), then limk . . . .  k"FN.k = 0  for every n. 

3. I f f ( t )  = t ~, then the integral in (2.27) can be performed explicitly 
(ref. 37, formula 7.311.2, p. 826) and the coefficients FN.k are given by 

( r(N/2) rl /+ l) 
F'" - ~ 2'F((N +-k + l-ff~-~f----k)/2 + l ) if k + / i s e v e n a n d k ~ < /  

N. *- -- (2.29) 

to otherwise 

and are, in particular, always nonnegative. It immediately follows that for 
a generic function 

f(t) = ~. f,t' (2.30) 
/ = 0  

the coefficients FN. k are given by 

F ,̂,~. = ~ Jt--N.*C~tl (2.31) I=k 
Therefore, if all the coefficients f~ are nonnegative, then so are the FN. k. 

In particular, using (2.27) or (2.31), it is possible to compute the coef- 
ficients FN.k for the functions exp[J(~,  x)] and exP[�89 x)z]. In the first 
case we obtain 

= FN, k \ '~)\~7 Isvi2+* -,(J) (2.32) 

i_~ More precisely, it suffices that f be nanllegaliue and 11ol almosI-el~eryu,here vanishillg. 
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where I,, is the m o d i f i e d  B e s s e l f u n c t i o n ' 6 ;  in the second case the integration 
gives 

for even k 
(2.33) 

for odd k 

where iF, is the c o n f l u e n t  ( d e g e n e r a t e )  h y p e r g e o m e t r i c  f u n c t i o n  (ref. 37, 
pp. 1058-1059). These two expansions will be used in the next section. 

Let us now compute the Clebsch-Gordan coefficients. In general we 
can write 

Y N .  :q . . . .  a- k(~) ya, .../~,(~) = ~ ~ = , N . / ~ N ;  . . . .  k./.k:/Jt"'/~':""''"YY'"''"(~,,, N .... , 
m 

Using the orthogonality relations (2.10), we obtain 

(2.34) 

I ~, . . . .  ~. y I J , . . . & ~  W' , . . .~ ' , , , (~)  (2.35) ~N;('~'I . . . .  k. I,k;[]t'"fll;}'l'"Ym=,,t d s  Y N . k  ( ~ )  U.I , I  N .... 

This integral can be computed explicitly. We get (see Appendix A.5) 

(~:q --. ~k:/h ".~It: ~'1 "" ~',,, 
N :  k .  I .  I.,1 

I'IN. k P N .  I~IN . . . .  k !  l!  m !  

l . t N . k + j ( k + j ) !  i ! j !  h !  

X I N. " " "  ~k : r " " " f l i h l  " " " h i t  a N. " " " fll; 171 " " �9 b h C l  " " " Cj I N ~'' .... ' �9 �9 ~',,,: c, �9 �9 ' ,'~,,, . ,,, (2.36) 

if I I - k ] < ~ m < l + k  and k + l + m  is even, with i = ( m + k - l ) / 2 ,  j =  
~ X l  " �9 �9 ~ tk ;  [11 " �9 �9 i l l :  Y l  " " " Y , .  ( r e + l - k ) ~ 2 ,  h = ( l + k - m ) / 2 ;  in all other cases -^,;k.~ .... 

vanishes. (Of course we are considering k, l, m ~> 0.) 
In the following we will be interested in the scalar quantity 

( ~  N ; k , l . m = ~ N : l r  . . . .  " ( ~ N ; k . I  . . . .  (2.37) 

The general formula is reported in Appendix A.5 [see (A.63)]. A par- 
ticularly simple case is m = l + k: 

/t 7v' k/t 7v" t (2.38) 
~ , :  ~. = X,N I . l + k  . l + k  "~ 

l~-U. l + a- 

'6 In particular, for N =  I (the Ising model) we get F u o = c o s h  J and F~. ~ =s inh  J, and there- 
fore the formulae in the following sections will be written in terms of the usual high- 
temperature expansion parameter v , . ,  =- F, .  , / F , . ,  = tanh J. 
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which can be obta ined  directly f rom (2.36), using the proper t ies  of  the IN. k 
tensor  and (2.16). I f  k = 1, this gives 

_N(N+J 2) 
N :  I . / . / +  1 (2.39) 

It  follows immediate ly  f rom (2.35)-(2.37) that  fiN: k/.,,, is symmetr ic  in 
the variables k, I, and  m. This implies, for example,  that  

- -  2 __ ~ / "  ~ ' l -N ,k ] ' l -N , I - - k  
~ - N : k , l . l - - k - - ( g ~ N ; k , l - - k . I  - N , I  

II-N.I 
(2.40) 

[ f rom (2.38)].  It  also implies that  for k fixed it suffices to find ~gN: k./ .... for 
l<<,m <~l+k. Thus,  the two coefficients needed (for each l) for the case 
k =  1 are obta ined f rom (2.39). For  the ease k = 2 ,  which will be used later, 
we have f rom (2.38) that  

N(N+ 2)(N+I--1) (N+f - -2 )  
cgA':2't't+2= 2 ( N +  2l) 

(2.41) 

and f rom (A.63) we obta in  ~7 

N +  2) (N-2 ) (N+l -2 )  
Cgu:2'"'=J~"'l((N + 2 / ) (N  + 2 , - - 4 )  (2.42) 

Using the completeness  relat ion (2.20), formula  (2.35), and (2.17), it is 
easy to verify the identity 

• ~ U ;  k. I. ,,, = ~4~, iJK,  V .. . .  (2.43) 
k = 0  

3. EXACT S O L U T I O N  FOR A GENERIC h 

3.1. Finite Vo lume 

In this section we want  to discuss the mos t  general O(N)- invar iant  
a -model  taking values in S ^ ' -  ~, with neares t -ne ighbor  interactions,  defined 

~7 Formula (2.42) is potentially ambiguous if N + 2 / - 4 = 0 ,  which can happen for (N=2, 
(,,2 2 = N(N-  1 ) and ~u: 4. o. o = 0; these results can be I=l) and (N=4, /=0). In fact, "6N:2.1. I 

obtained by interpreting (2.42) as an analytic function of N for each fixed/. 
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on a one-dimensional lattice with L sites and periodic boundary conditions. 
We consider a Hamiltonian of the form 

L--I  
~ ( { 6 } ) = - -  ~ h(f . , --f , .+l)  (3.1) 

_x'~O 

with 6c = fro. Interesting special cases are the N-vector model 

h(6.,. �9 6.,,) = 3"6.,. �9 6y (3.2) 

and the RP N- 1 model 

J 
h(f,. �9 f.,.) = ~  (f,." f,.)2 (3.3) 

The coefficients FN. k have already been evaluated for both of these models 
[see (2.32) and (2.33)]. 

We want to evaluate the following quantities: 
�9 Partition function: 

L--! 

Zu(h; L)= f Na I-[ ehl~ (3.4) 
x=O 

�9 Spin-k two-point function (k = 1, 2,...): 

1 
aN.k(X, h; L) =Y~N.k YN, k(fO)" YN, k(f.,_)>L (3.5) 

L I 
GN.k(p, h; L) = ~, e'F"GN, k(X, h; L) (3.6) 

.v=O 

where 0 ~< x < L, and p is an integer multiple of 2rolL. Note that the nor- 
malization ~UN, k [defined in (2.16)] ensures that GN, k(O, h; L ) =  1.18 

�9 Susceptibility (= two-po in t  function at zero momentum): 

Zu.k(h; L) = ag ,  k(O, h; L) (3.7) 

is Since we are. using periodic boundary conditions, Grc.k(x,h; L ) = G ^ , k ( L - x , h ; L )  and 
therefore ~N.k(P. h; L) is real. Indeed, t~A,.k( p, h; L) >/0 for all p because Eq. (3.6) can be 
written as 

G~'~.k(P II; ) = ~  ~ e~a"YN.k(6.,.) 

by using translational invariance. On the other hand, GN.k(.V, h; L) may in some cases be 
negative ("antiferromagnetism"). 
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([Zg,*( L)/~N,k(h; L)]-- 1) '/2 
yl2ndltl,. L) 2 sin(g/L) 

(undefined 

In all of these formulae we have used the abbreviations 

L - - I  

~ r - -  l-I df2(~r.,.) 
. ' r  

1 e _ . ~ , l { ~ , l  i 
Or( {a} )) z =ZN(h;  L~) f ~ f ( { a } )  

Cucchieri et  al.  

�9 Two-point function at the smallest nonzero momentum: 

( 2~t h ; L )  (3.8) .~N.k(h;L)=GN. , q----~, 

�9 Second-moment correlation length: 

if XN, k >~ ~U.k 
(3.9) 

otherwise 

(3.10) 

(3.11) 

To compute all these quantities, we expand e -z~ in terms of the 
hyperspherical harmonics YN.,, as described in the previous section: 

c,c 

exp[h(a.,. "6.,,)] = ~ FN.k(h ) YN.k(6x)" YN.k(6.,,) (3.12) 

The integration over ~ a  is then immediate using the orthogonality rela- 
tions (2.10) and the integral (2.35). In this way (using also the symmetry 
of ~gN:k,/ .... in the indices l and m) we obtain 

GN.k(X, h; L) = - -  

GN.,(P, h; L) = - -  - -  

Zu(h; L) =FN.o(h) L ~. ~/'N, ION, l (h )  L (3.13) 
I=0 

1 F N o(h) L 
' Z..a c'tffN;k,L,,VU.m(h)XON, l(h)L-x (3.14) 

~#N,k ZN(h; L) t ..... o 

1 Fuo(h)/- ~. { 2 VN, l(h)L 
' ( ~ N ;  k ,  I, m 

r k ZN(h; L) t ..... o 

ON. l(h) 2 -- VN, ,,,(h ) 2 ] 
• 2(cosp) VN, l(h) VN,,.(h)+vN.,.(h) 2~ (3.15) 
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w h e r e  0 ~< x ~< L - 1; he re  we  h a v e  def ined  the  n o r m a l i z e d  e x p a n s i o n  coef-  

f ic ients  

VN k ( h ) - F N ' ~ ' ( h )  (3.16) 
�9 FN.o(h ) 

which  will  p l ay  a cen t r a l  ro le  in the  s u b s e q u e n t  analysis .  ~9 N o t i c e  that ,  

because  o f  the  p r o p e r t i e s  o f  the  coeff ic ients  FN. k discussed  in Sec t ion  2, we 

h a v e  I vN. k(h)l < 1 for  all  k 4: 0. 2~ M o r e o v e r ,  all  these  series c o n v e r g e  ve ry  

fast (a t  least  i f h  is s m o o t h ) :  this  is because ,  for  k ~  ~ ,  Vu, k(h) goes  to  ze ro  

fas ter  t h a n  any  p o w e r  o f  k, whi le  X N . k  " ~ k N - 2  and  [ see  (2 .43)]  

(~2N: k, I, m ~ min(Wu,  k~PN, I' ~ N ,  k~/"N ..... oliN, ,,,WN, I) (3.17) 

F ina l ly ,  u s ing  (2.43), it is t r iv ia l  to  check  tha t  GN.~(O, h;  L ) =  1 in (3.14). 

3.2. I n f i n i t e  V o l u m e  

W e  w a n t  n o w  to  c o n s i d e r  the  i n f i n i t e - v o l u m e  l imi t  L -~ oo in the  expres -  

s ions  f r o m  Sec t i on  3.1, keep ing  the  p a r a m e t e r s  o f h  fixed. S ince  [vN. k(h)[ < 1 

for  all  k # 0 ,  vs,  k(h) L goes  to  ze ro  for  L ~ o o  unless  k = 0 .  T h u s  in 

(3 .13) - (3 .15)  on ly  the  t e r m  w i t h  l = 0  surv ives  in the  i n f i n i t e -vo lume  limit .  

S ince  C~v; k. o. ,,, = t~k.'n~PN, k, we get  the  w e l l - k n o w n  resul ts  135' 38), 21 

ZN(h; L) = FN, 0(h) t" [ 1 + O(e-"L) ]  (3.18) 

GN, k(X , h; L) = Vu, k(h) I't [1 + O(e-~'z)] (3.19) 

1 - / ) N , k ( h )  2 [1 + O(e-UZ)] (3.20) 
CN.~( p, h; L)  - 1 - 2(cos p) VN, k(h) + VN, k(h) 2 

19The summand in braces in (3.15) is potentially ambiguous in two cases: ( i ) p = 0  and 
VN.I=VA,.,,,; and (ii) p = n  and v~.l=-v~., , , .  In these cases the correct summand is 
~:k.t.,,,Lt, lv.l(h) L, as can be seen by going back to (3.14} and performing the sum over x. 
[The same result can be obtained formally by symmetrizing the summand in /and m (using 
"6",v:k.t.,,, = "r i.e., replacing VLN. t by (v~r t -  V,v.,,,)/2 , L  and then treating o,v.t and V,v.,,, 
as independent variables for which one can take the limit Vu.m ~ +-V,v.i.] 

2o For the RP 'v- 1 model, or more generally if h(a.,. �9 cry} is an even function, all the coefficients 
F,v.l(h) [and the corresponding Vu.l(h)] with I oddare equal to zero (by symmetry). There- 
fore, in the above formulas, only even values of I and m can appear in the sums [except, 
of course, in G,v.k(x,h;L) for x = 0 ] .  From this and the properties of the quantities 

2 ~N:k./ ..... i.e., that they are nonzero only i f k + l + m  is even, it follows that for k odd the 
spin-k two-point function vanishes for all x V: 0. Of course, this follows equivalently from 
the Z,-gauge-invariance of the model when h is an even function. 

21 The formulae in Section 3.1 are written for x/> 0. By translation invariance, we obviously 
have G,v.k(x)=G,v.A.(-x). Therefore, we can obtain formulae valid for all x by syste- 
matically replacing x by [x[; we have done that here. 
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where 

p = - m i n  log IVN. k(h)l (3.21) 
k~0 

In par t icular  we obtain  

1 +VN, k(h) 
XN.k(h; o0) (3.22) 

1 --VN.k(h) 
and 

f VN.k(h) I/2 
.,;r 00) 1--VNk(h) if VNk>~O "~,v. k ,n,  = . " (3.23) 

undefined if VN.k<0 

Let us notice that  in infinite vo lume the correlat ion functions are 
simple exponentials.  In fact, if we define the masses raN. k(h) for k = 1, 2 .... by 

)--lOgVN. k(h ) fo r  O<~VN.,<I (3.24) 
raN. k(h) = (undef ined for -- 1 < VN., < 0 

then, in the usual case zz in which vx. k > 0, the corre la t ion functions are 

GN.k(X, h; ~ )  =e  .... ,,,.,N (3.25) 

We can also define the exponential correlation length by 

~c.,v~, o o ) =  lim - I x [  1 
N.k ~n; .,--- • Iog GN.k(X, h; oo) --mN.k(h ) (3.26) 

4. A O N E - P A R A M E T E R  F A M I L Y  OF H A M I L T O N I A N S  

In this section we want  to s tudy the con t inuum limits and finite-size- 
scaling functions in a one -pa ramete r  family of  interact ions of  the form 

h(~ .  ~) = J h ( ~ .  ~) (4.1) 

where h is some fixed function. Therefore,  FN. k, VN. k, and all the quanti t ies 
in t roduced in the previous sections are now functions of  J. As h is 
arbi t rary,  it suffices to consider  the case J >  0 only. Since we are in one 
dimension,  there are no critical points  at finite J; the only way of  obta ining 

22 As we will see in Section 4.1, the case of negative VN.k does not give rise to a valid con- 
tinuum limit. 
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a continuum limit is to take J ~  + ~ .  We will do this by obtaining an 
asymptotic expansion of the coefficients FN.k(J ) for large 3". Using the 
general formula (2.27) with f(t)=exp[Jh(t)], the problem reduces to 
expanding the integrand around the absolute maxima of h(t) in the interval 
[ - 1 ,  1]. 

In Section 4.1 we will study the continuum limit in infinite volume. In 
Sections 4.2 and 4.3 we will study the finite-size-scaling limit and the 
corrections to it. 

The discussion in Section 4.1 of the possible continuum limits will be 
restricted to the case N~>3, since N = 2  displays different properties 
[ related to the different topological structures of the sphere for N >~ 3 and 
N = 2, and to the fact that the only nontriviaI normal subgroup of O(N) for 
N~>3 is { _+I}, while for N = 2  there are many others]. 23 Although for 
N = 2  the analysis of possible continuum limits is not complete, it is 
nevertheless valid for the limits included, and so are the finite-size-scaling 
functions and their corrections. 24 

4.1. Cont inuum Limits and Universal i ty Classes for N~>3 

4.1.1. General i t ies on Cont inuum Limits. Consider a sequence 
( - )  ("~ of infinite-volume lattice models. A continuum limit is defined by 
choosing length rescaling factors ~"~---, ~ and field-strength rescaling 
factors ~.~k such that the limits -~5 

G~~ lim r(,,~ ~l,,~ tz-(,,l~ (4.2) 
, "~N. k V N .  k~. ~ ~ !  

n ~ e.,2., 

•(cont)(• lim yln) ~'(n)-dt'~.(ll) [ ~ '(n)-I~ 
N . k  l l " l  ~ ~ N , k  ~ V N . k ~  V !  

114 o'~ 
(4.3) 

exist (in the sense of distributions), where d is the spatial dimension. (For 
simplicity we are considering only the two-point correlation functions.) In 
other words, a continuum distance of ,? centimeters corresponds to 
x--S("b? lattice spacings; and conversely, one lattice spacing corresponds 
to ~("~-' centimeters, which tends to zero in the limit. 

In our case of a d =  1 nearest-neighbor model, the correlation func- 
tions are pure exponentials [see (3.19)]; the only parameter is the mass 

"~ In par t icular ,  the discuss ion fol lowing (4.36) does not  app ly  for N = 2. 
_,4 The  case N = 1 is even more  trivial,  as the o n l y  possible funct ion/1  is h ( t )  = t. 

-,5 We use the Four ie r - t r ans form conven t ion  

I" 
N.k  ~ v ,  -~ d a i e i P "  G N . k  (X) 

J 
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pa rame te r  ,,("~ It  is easiest to work  in p-space:  for any fixed con t inuum ~ N , k "  

m o m e n t u m  fi, the lattice m o m e n t u m  p - ~(")- '`6 tends to zero as n --* oo, so 
we can approx ima te  

cos p ~ 1 - p2 /2  = 1 - F.("w zfi~-/2 (4.4) 

Thus,  the denomina to r  in (3.20) is 

( 1 _ , , ( , )  ~2 ~(n)-2-2 (hi ~N.k~ + ~ p VN. k (4.5) 

(Note  that  3, ~'~-2 ~ 0.) 
N o w  consider a ratio of  the correlat ion function for two different 

values `6, ,6'. If  1 - v~lk does no t  go to zero as n ~ oo at  least as fast as 
~'("~-~ then the rat io t~-(c~ . . . .  t)/~h is 1, i.e., ~ o , t ~ r  is independ- ~ ~ N , k  ~,1 ~ I I ~ N , k  I . IJ]  V N ,  k ~.1Jl 

ent of  ft. This is a physically trivial theory  (white noise). On  the o ther  hand,  
if 1 -v~ . )k  goes to zero f a s t e r  than  3 (''~-~, then the limit (if any)  will be 
const/`6-', i.e., a massless free field, which is ill-defined in d imension d =  1. 
Therefore,  a sensible con t inuum limit can be ob ta ined  only when the 
produc t  ( 1 - - ( " )  ~ ~'~") tends to a nonzero  finite cons tant  (which is of  ~ N .  k l  

~ ( c o n t )  course k-dependent) ;  and this limiting constant  is in fact the mass  ""N.k 
of the theory. Moreover ,  in d imension d - - 1  it easily follows f rom (3.19) 
that  r(,,~ should likewise tend to a nonzero  finite (k-dependent)  cons tant  % N , k  
~(cont) .  N, k , the con t inuum corre la t ion function is then a massive free field 

u•(cont} 
N . k  (4.6) a ( c o n t ) ( r ~  __ 

N, k ~P'!  . .~2~/~.la(cont)~2 
F -r- 

with mass  

m(~O.t)_ lim Z("~m~)k= lim S(")(1--V~.)k) N , k  
st  ~ c~  tt ~ ~ ,  

(4.7) 

and field-strength normal iza t ion  

o a • ( c o n t )  " ) y ( c o n t  ) t ~  ( cont )  
N . k  ~ ' ~ " ~ N . k  ~ ' ~ N . k  (4.8) 

Going  back  to x-space,  we have 

GiCO,t)t r = ~ lco . t )  e x p [  - , . ( t o n i )  
N.k '~'! N.k ~ l~l] (4.9) 

In summary ,  con t inuum limits can be obta ined  f rom sequences of  
lattice theories in which v~)k ~ 1 (i.e., rn~)k ~ 0), and only f rom such 
sequences. In part icular ,  con t inuum limits in this sense c a n n o t  be obta ined  
f rom sequences of  theories in which v ('')u.k~ - 1 ,  i.e., ant i ferromagnet ic  
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models with slow decay of  correlations. As can be seen from (4.9), a con- 
na(c~ and the t inuum limit is uniquely defined by the limiting masses - 'U.* 

limiting normalizat ions r t~~ Moreover ,  we shall consider two cont inuum ,aN. k �9 

theories which differ only by rescalings of  .'~ and the field strengths to be 
essentially identical. We therefore label the different universality classes by 
the limiting mass ratios, defined a s  26 

,(cont) m ~ ) 2  
mN'2 (4.10) 

~ N . k  : r H {  . . . .  t) lim ,,,i,,) 
" '*N .k  n ~  " '~N,k  

In the case at hand  [Hami l ton ians  of  the family (4.1)], we are con- 
sidering a sequence of  theories h = Jh  parametr ized by J (which plays the 
role of  n). As already mentioned,  the only possibility for having VN. , ( J ) - ~  I 
is to let J - ~  + oo. In the next subsection we will perform an asymptot ic  
expansion of  VN, k(J) for large J, and we will typically find a behavior  of  the 
form 27 

ON. k ( J )  = 1 - -  ~ l N ,  kA(J )  + o(A(J) )  (4.11) 

where the mass scale A(J)  and the coefficients 5N.k will be computed  in 
each case. 28 In this situation, S ( J )  should clearly be taken to be propor-  
tional to A ( J ) - t ,  and the con t inuum masses will be 

m(COnt) u.* = S u . k  lim A ( J ) ~ ( J )  (4.12) 
f f ~  

Remarks. 1. For  some choices of  h we will find that the mass 
parameters  Vu.k(J) behave differently according to whether k is even or  
odd. In such a case we shall take A(J)  to be of  the order  of  the smallest 
mass in the theory- -which ,  it turns out, is always in the even sec to r - - and  
we shall write (4.11 ) only for k even. We shall then take ~(J )  propor t iona l  
to A ( J ) -  ~ and obtain a good  con t inuum limit in the even sector. Of  course, 
in the odd sector we have simply white noise t , ,~co, ,)_ ~"* N, k - -  "~ 00  ). 

2. Al though the two-point  correlat ion function is that  of  a free field, 
the theory is definitely not  Gaussian (neither on the lattice nor  in the con- 
t inuum limit): the higher-point  cumulants  do not  vanish. See ref. 39 for a 

26 We choose m2r in the numerator for reasons that will become clear later. 
27 In Section 4.3 we will assume an expansion to the next order [see (4.88)], which will be 

used to compute the corrections to finite-size scaling. In Section 4.1.2 we will explicitly com- 
pute such an expansion for two simple Hamiltonians (thefirst case and those belonging to 
the second case with h even): see (4.14) If. 

_~s Obviously there is some arbitrariness in the definition of A(J): if A(J) is a function satisfying 
C--~ lira j_ ~. A(J)/A(J) with 0 < C< c~, then the pair A(J), ~N.k =-- C6N.* is just as good as the 
pair A(J), 5N. k. 

822,86/3-4-10 
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calculation of the dimensionless renormalized four-point coupling constant 
gR for the general Hamiltonian (3.1). In the continuum limit gn tends to a 
nonzero value that depends only on the mass ratio ,,o(co,,~/,~(co., '"N. 2 I ' ~  I " 

4.1.2. Two Simple Cases; N-Vector and R P  N - 1  Universality 
Classes. Before considering the general case of one-parameter 
Hamiltonians, let us discuss two simple cases of Hamiltonians which 
generalize, respectively, the N-vector model and the RP N- t model: 

First Simple Case. t = + 1 is the only absolute maximum of h(t), and 
h(1)> 0. (This is a subset of what will later be called the Hamiltonians of 
type I.) 

Starting from (2.27), we first expand the integrand around t = 1 using 
the relation 

c:,2 ,,, ( ) 
~kt"N/2- t ( 1 ) _~FI N +  k -  2, - k ;  N-l'~-,-21 - t  (4.13) 

where 2F~(a, b; c; z) is the hypergeometricfunction (ref. 37, formulas 9.100 
and 9.14.2). Then, extending the integration in t from [ - 1 , 1 ]  to 
[ -  ~ ,  1 ], we obtain the asymptotic expansion 

aN.~- ~ -3)] 
FN.k(J ) = f N ( J )  1 ----if--q- _ --}- O(J (4.14) 

with 

J"" 
fN(J)=[2rcJ~'(1)])/zl"\2J\ 2 J 

l [~.Nk_t_l N 2 - 1  ] 
au.k = 2~,(1) . ~ (N-- I)(N-- 3) 4 r 

bN.k 

(4.15) 

(4.16) 

1 J ' (N+ 2k + 1)(N+ 2 k -  1) (N+2k-3 ) (N+2k-5 )  
8~'(1) z 16 

( N +  2 k -  1 ) (N+ 2 k -  3)(N+ 3) (N+ 1 ) 

( N +  5) (N+ 3) (N+ 1)(N-- 1) 
+ r -  

16 

(N + 3)(N + I st  (4.17) 
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where AN, k ( ~ 0) are the eigenvalues of  the Laplace-Bel t rami  opera tor  on 
the sphere [given in (2.1)], and we have defined 

r -  h"( 1 )/h'(1 ) (4.18a) 

s -= ,~"'( 1 )/h'( 1 ) (4.18b) 

For  the normalized expansion coefficients ON, k(J) we therefore have 

where 

(IN, k bN. k 
- -  + + O ( J  -3)  (4.19) 

Vu'k(J)=l  2 h ' ( 1 ) J  4 h ' ( 1 ) 2 J  2 

~lN, h" = ~N.k  (4.20) 

"bN .k=~ tN .k [~ -~ - - (N+l ) r - - 1 ]  (4.21) 

The N-vector  model  corresponds to h(1 ) = h'(1 ) = 1, 1- = s = 0. Notice that 
in this case formulae (4.14)-(4.17) could alternatively have been found 
through a direct expansion of  the Bessel functions in (2.32). 

Thus, for J---~ + c o  all masses [see (3.24)] go to zero as 

raN. k(J) ~ 2N, kA(J) (4.22) 

where A ( J ) - 1 / [ 2 J h ' ( l ) ]  is a nonuniversal  scale factor that goes to zero 
for J - ~  + or. (Here ~ means that  the ratio of  the left and right sides tends 
to 1 as J--+ + cx:).) If  we consider the mass ratios defined by 29 

InN, 2(J) 
~N, k(J) -- (4.23) 

raN, i,.( J) 

we obtain, in the con t inuum limit, 

~U, 2 
"~N k -  (4.24) 

" ~N,k 

Therefore, all these Hamil tonians  give rise to the same cont inuum limit and 
belong to what  we will call the N-vector universality class. 

Second  Simple Case. t = + 1 are the only absolute maxima of  h(t) 
[hence h( 1 ) = h( - 1 )], and h'( 1 ) > 0, h'( - 1 ) < 0. (This is a subset of  what  
will later be called the Hamil tonians  of  type II.) 

2,~ We use raN. 2 rather than raN. t in the numerator in order to facilitate comparison with the 
second simple case below, in which raN. k= + CO for all odd k. 
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In this case one must sum the contributions of the two maxima, that 
is, FN. , ( J )=F,~ .k (J )+F~k(J ) . .  The contribution F +N,, coming from t =  1 

-- N/2 I ( has already been computed. Using the fact that C k - - 1 ) =  
(-1)*C~. ' /2-l(1) ,  we see that the contribution F,v., coming from t = -  1 
can be obtained from F + by replacing the derivatives h~"l(1) with N,k  
( - 1 ) "  h~"~( - 1 )  and then multiplying the whole thing by ( - 1 )  k. Thus, 
keeping only the leading terms, we get 

VN.,(J)= 1 2N k~/'(1)-(N+'V2+ lh'(-l)l -~N+l)/2 
�9 q -  O(J -2) (4.25) 

2J  ~ , (1) ( I -m/2+l~ , (_ l ) l ( t -N) /2  

for k even, and 

hi(1 )11-  N ) / 2 -  ih, ( _1)1 (, N)/2 
I ) N . k ( J  ) - -  q - O ( J  - I  ) (4.26) 

hi (  1 )l l - -  Nil2.31_ i'h2, ( _ 1 )I |1 - -  U)/2 

for k odd. 
From these formulae we immediately see that l imj_  +~_ Ivk(J)l < 1 for 

k odd, so that the odd-spin sector of the theory remains noncritical even 
at J =  + oo. [In the special case where the function h is even 3~ (as in, e.g., 
the RP 'v-~ model), we have in fact ON, k(J)=O for k odd, for all J;  while 
for k even we get the s a m e  1)U,k(J ) as in the first simple case, given by 
Eqs. (4.19)-(4.21).] On the other hand, the even-spin masses go to zero as 

mN.k(J)'~)tN, kA(J)  for k even (4.27) 

where again 

1 ]l'(1)-(N+ll/2+ I T f ( - 1 ) l  - ( N +  ,,/2 
A(J)  - (4.28) 

2J  ~,(1)(i--N)/2_~ i~,(_l)]( l-N)/2 

is a nonuniversal scale factor that goes to zero for J--* + oo. Thus the 
limiting mass ratio ~N.* in this case is the same as in the N-vector univer- 
sality class for even k and is zero for odd k. That is, 

:f2U. 2/2N., for k even 
~'N'*='~0 for k odd 

(4.29) 

3(' In this case we have FN.k(J)=O for k odd. For k even we have F,v.~(J)=2F,~.k(J ), and 
therefore the coefficients aN. , and bu. , are given by (4.16) and (4.17), and J),,(J) has twice 
the value in (4.15J. For r =  I and s = 0  we obtain the expansion for the RP : ' - t  model, 
which can also be obtained by direct expansion of the coefficients (2.33). 
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All these Hamiltonians belong to the same universality class, which we will 
call the R P  N -  t universali ty class. Notice that the exact Z 2 gauge symmetry, 
which holds for the usual R P  N -  i Hamiltonian (and more generally when- 
ever h is even), plays here no role. Provided that the Hamiltonian has a 
two-maximum structure at t =  + 1 with h'(-I-1) :~0, the cont inuum limit 

will be Z2-gauge-symmetric. For instance, a Hamiltonian with h ( t ) =  
t2h  - 0c ( t - - t 3 ) ,  with I~1 < 1, belongs to this universality class. 

In summary,  we have thus far defined two universality classes: 

(i) The N-vector universality class, where all the masses go to zero 
as J-- ,  + oo at the same  rate and the limiting mass ratio ~N.* is given by 
(4.24) for all k. 

(it) The R P  ^ ' -  ~ universality class, where as J ~  + oo the even sector 
displays the same behavior as for the N-vector universality class [i.e., the 
masses go to zero at the same rate with ~N. k given by (4.24) for all even 
values of k] ,  while in the odd sector the masses either (a) do not go to zero 
(as in the second simple case above) or else (b) go to zero at a rate slower 
than for the even sector (as will occur in some examples below), and there- 
fore ~N. k is zero for all odd values of k. 

Formulae (4.22) and (4.27) had to be expected on general grounds. 
Indeed, the continuum limit of the N-vector model (or more generally of 
any model belonging to the first simple case above) is simply Brownian 
motion on S N - I ,  and the generator of Brownian motion is the 
Laplace-Beltrami operator. 3~ Thus we expect m N . , ( J )  ~ A ( J ) 2 u . k ,  where 
A ( J )  is a nonuniversal scale factor depending on the chosen sequence of 
lattice Hamiltonians. An analogous discussion applies to the R P  N -  ' case: 
here the continuum limit is Brownian motion on R P  N - I ,  and thus the 
corresponding masses are related to the eigenvalues of the Laplace-  
Beltrami operator  on R P  N -  1 (which are simply the even-spin eigenvalues 
of the Laplace-Beltrami operator  on S ^ ' -  ' ). 

4.1.3. General  One -Parameter  Family. We want now to 
address the general problem of studying the limit J ~ + oo for an arbitraIT 
interaction h; in particular, we want to know whether the two universality 
classes we have just discussed are the only ones which can appear  as a 
critical limit 'of interactions of the form (4.1). As we shall see, the situation 
is much more complicated than this, and in fact an infinite number  of 
universality classes appears. 

3~ An arbitrary second-order elliptic differential operator on a manifold M generates a diffu- 
sion process on M; Brownian motion is the special case in which the generator is the 
Laplace-Beltrami operator. For the general theory of diffusions on a manifold, see, e.g., 
ref. 40, Sections 4.1-4.3. 
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Let us assume henceforth that h is smooth,  and that  it has finitely 
many absolute maxima, all of  finite order. In particular,  suppose it has M 
absolute maxima on the interval [ - 1 ,  1] at points tt ..... ta,~ with 
h(t~) . . . . .  h ( t M ) = h  ..... . Let n~ be the order  of  the max imum at t;, i.e., 
the smallest (nonzero)  integer such that  h~'"~(t~):~0. [When  t; :/= + 1 the 
order  n, is of  course even and ~> 2, and h~"~(t;)<0. When t ; =  - t  we have 
h~'"~(t~) < 0, and when t,.= + I we have ( - 1 )'"hV"~(t~) < 0.] Fo r  J--+ + m we 
have 

M 
FN, k ~ ~, --̂ '.~"i)a- (4.30) 

i=1 

where ~-ci~ is the contr ibut ion of  the ith maximum; to leading order  in J I"N, k 
it is given by 

F~i~ - C~ '/2- '(t,) 
N. k "~' eJI ...... Ai g-'N/2-- I (1 )  J -~ '  (4.31) 

~ k  

where 

( N -  1)/(2n,) if t , =  + 1 

~ =  1In i if ti=~ 4-1 
(4.32) 

and A~ is a positive constant ,  independent  of J and k, given explicitly by 

(ITT'""(t,)l} -~'\ F(N/2) F(cq) ,~; (4.33) 
A , = \  ~ / F((N-1)/2) n, 

where 

~'2 ~N-3)/2 if t i =  _+1 

"4i-~ [2(1--t~)lN-3)/Z if ti=/= +_1 (4.34) 

For  J r  + oo the leading contr ibut ion comes from those terms with 
the smallest e;; we call these maxima the principal maxima. Setting 

= min; ei, we thus have 

- C N/ ' - -  ' ( t , )  
Fzv. k ~ e  J, . . . .  J - ~  ~. Ai C~,/2_,(1) (4.35) 

We want now to know under  what  condit ions the m a s s  mN, ic(J ) tends to 
zero as J r  + 00. For  this analysis it is sufficient to use the leading-order 
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expansion (4.35). Equivalently we want to see under  what  condit ions 
VN. k(J) ~ 1, i.e., when I- notice that  C~/2 - l(t) = 1 and A ~ > 0 ] 

C N/2- l(ti) 
A' cN/2 - ' (1 )  ~" Ai (4,36) 

( ' u /2 -  t(1) when t #  +1 ,  Since (see Appendix A.4) for N>~ 3, I CN/2- t(t)[ < ~ .  
this condit ion cannot  be satisfied for any k if there is in the sum an i such 
that t ; V = _ + l .  Thus the principal maxima can only be at 1 or - 1 .  
Moreover ,  if t = - 1 appears  in the sum, the condit ion can be satisfied only 
for even k, since C~-/2-1(- -- 1 ) = ( - - 1 ) ~ P N / 2 - t ( 1 )  . ~ k  We end up with the 
following results: 

1. If t; = 1 is the only principal maximum of  h(t), then 

lim ON, k(J ) = 1 (4.37) 
J ~  +~ . ,  

for all k >f 1. In this case all correlat ions become critical. 

2. If tg= + 1 are the only principal maxima o fh ( t ) ,  then 

lim VA,.k(J)= {1 for k even (4.38) 
J~ +~ CN.k for k odd 

with - 1 < r k < 1. In this case only the even-spin sector becomes critical. 
In detail, we have 

I h " " ( 1 ) l - = - I h " " ( - 1 ) 1 - =  

C,v.k - Ih""(1) l -x- t - ITs" ' ) ( -1)1-= 
(4.39) 

where n = ( N - -  1 )/20c. 

3. If t~ = - 1  is the only principal maximum of  h(t), then 

lim VN, k ( J ) = f l m  for k e v e n  (4.40) 
J - + ~ ,  1 for k o d d  

As in the preceding case, only the even-spin sector becomes critical. 

4. If there exists at least one ti 4: +_ 1 such that  ~,. = 0c (i.e., there are 
principal maxima other  than _ 1), then 

lim VN. k(J) = C'N, k (4.41) 
J ~  + o ~  
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with - 1  < C'N, k < 1 for all k. In this case there is no continuum limit for 
any k. In particular, if there is exactly one principal maximum and this is 
a point t1 # _+ 1, then 

c N / 2  - ~ ( t i )  
k 

c~v.k C[.V/2_ ~(1) (4.42) 

These results can be understood heuristically: If some t~ :~ + 1 con- 
tributes at leading order to the asymptotic expansion of FN. k (case 4), then 
for large J the typical configurations have ~,.. ~.,.+ t ~ t; on a significant 
fraction of the bonds. For  N~> 3 there are many configurations on each 
bond with this property (since the azimuthal angles are undetermined), and 
they keep the system disordered even at J = + c~. In case 1, by contrast, 
the system orders and thus for J =  + ~ the correlation length becomes 
infinite. In case 2 the system orders modulo a sign; the even-spin correla- 
tions are insensitive to the sign and thus display critical behavior, while the 
odd-spin ones remain disordered even at J =  + ~ .  In case 3, the system 
develops antiferromagnetic order at J =  + ~ ;  the even-spin correlations are 
insensitive to the sign and thus display critical behavior, while the odd-spin 
correlations have no continuum limit. 32 In the following we will disregard 
the theories belonging to case 3 [ since for the odd-spin sector they do not 
have a continuum limit, and for the even-spin sector they are identical to 
theories of case 1 with h ( t ) ~  h ( - t ) ]  and to case 4 (since we have proven 
that they do not exhibit any nontrivial critical behavior). The 
Hamiltonians described in case 1 (respectively case 2) will be called 
Hamiltonians of type I (respectively type 11). 

To characterize the different universality classes, we want now to 
derive the behavior of the masses mN.k in the limit J ~  +oo.  In order 
to do this, we must carry the asymptotic expansion of FN.k(J) to the first 
subleading order for the principal maxima, and also consider the leading 
contributions from the nonprincipal maxima. Let us first consider 

3-, The antiferromagnetic case 3 can be transformed into the ferromagnetic case I by the 
change of variables a,? = ( - 1  )"a, together with h ^ I t ) =  h { -  t). The correlation functions 
then t r a n s f o r m  as G N. k( X,  h ^ ; ~f~ ) = ( - -  [ ),~-x G N" k(x, h; ~ ) a n d  

f, q,,,,Ip, l-,: rot k even Ou.~(p,T, ̂  
~ ) = ( G N k ( p + n , h ; c c )  for / , 'odd 

Thus, case 3 is identical to case 1 lbr the even-spin correlation functions; and it has no con- 
tinuum limit for the odd-spin correlation functions (since there is no divergence at p =0).  
This mapping also works in finite volume, provided that L is even. 
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theories o f  type I. The relevant expansion for FN, k is (we set t+ --t~ = 1) 

FN, k = e  JT' .... { A + J - ~ [ 1  

C N: - J - - {ti) 
+ Ait,-,N/2_t(1 ) 

i = 2  ~ k  

c+ dk. + ] 
j t / , , ~  q- o( J -  i/,,+ ) 

[ J - ~" + o ( J  -~')] } (4.43) 

where 

1 F((N+I)/2n+)[ n+[ it/,,+ 
c+ = N - -  1 r ( ( N - -  1)/2n+) L Ih'"+'(1)l 

N 2 -  1 
dk ,+=2U.k+ ( N - - 3 ) ( N - - 1 )  2 n + ( n + + l )  

~l,,+ +')(1 ) 
h~,,+~(1) 

(4.44) 

(4.45) 

(Note that c+ does not depend on k, while dk. + does.) The first correction 
to the leading term depends now on the relation between 0~ and 
fl - min2 ~ i ~ Me;. We have 

mN.k(J ) ~ A(J )  2N, k q-O(J  -I/n+ ) 

' (  NJ2 'I I) 
-b A + jl~- ~ i: :ti=fl~ Ai 1--~lr ~__ t ' + o ( J  ~-s )  (4.46) 

with 

A(J)  = c+ J -  J/"+ (4.47) 

(We call the maxima with 0~; =f l  the next-to-principal maxima.) Here it 
should be understood that only the dominant term is to be kept: 

(a) If fl > 0c + l /n+,  the first term is dominant and the model belongs 
to the N-vector universality class (4.22). 

(b) If fl < ~  + 1/n+, then the third term (the term of order 1/J/~-~) 
dominates provided that its coefficient is not zero. The coefficient is zero if 
k is even and the only next-to-principal maximum is t; = - 1; otherwise the 
coefficient is nonzero. Thus, for k odd the mass is 

I ( cN,,-,U,),) m,v..dJ)~A '~, Ai \ 1 ~'~- (4.48) 
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(bl)  If the coefficient (for all k) is nonzero, the limiting mass ratio 
(for any k) is 

Z, :  =,=~, A,(1 - c ~ / ~ -  '(t ,)lC up-- I(1)) 
~tN' ~ - T.;: ~,=/~ A~(I - C~_/z - ' (&)/C N/z- '(1)) (4.49) 

Clearly there is a multiparameter family of new universality classes, 
obtainable by varying the { &, A~} ~z  appropriately. 

(b2) If the coefficient (for k even) is zero, the behavior depends on 
whether the correction o(J  -c /s-~)  is larger or smaller than J-~/"+. If it is 
smaller, then (for k even) the term A(J)AN.k will dominate and therefore 
the ratios ~N.k will be those of the R P  N-~ universality class. 33 If the 
o(J -~ts-~J) correction is larger than or equal to j-t~,,+, then a more 
detailed investigation is needed. (We note that, also in this last case, the 
limiting mass ratio is zero for k odd just as for the R P  N- ~ universality 
class.) 

(c) Finally, if fl =0~ + 1/n§ then both terms are of the same order. 
Again we obtain new (multiparameter) universality classes. In particular, if 
the only next-to-principal maximum is t~ = - 1 ,  we get 

f~N. 2/~N.k for k even (4.50) 
~ 2/(,~N.k-[-B ) for k o d d  

where 0 < B < ~ is a parameter that interpolates the limiting mass ratio 
between the N-vector and the R P  'v- ~ universality classes. [Explicitly: 
B =  2A, / (c  + A + ).] 

For  theories o f  type H we set t + = t ~ = 1 and t _ = t2 = - 1; the expan- 
sion of FN. k is then given by 

o+_dk+) I k J- (l c_dk_  
FN.,.~eJ~, .... { A + j - ~ ( I  jr~,, j + ( - I  A_ )q-S; J 

A. ~k ' ( tJ  [ j _ ~ , + o ( j _ ~ , ) ]  (4.51) + o ( J - a - t / " ) +  , r 
i = 3  ~ k  

where n = n +  = n _  = ( N - 1 ) / 2 0 q  here dk.+ and c+ are given by formulae 
(4.45) and (4.44), and dk._ and c can be obtained from the same 
formulae by simply substituting ~l,,l(1) with ( - 1)" h( - 1). Defining 

3~ See case (b) of the definition of the RP t'- ~ universality class in Section 4.1.2. 
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fl = min3 _< i_< M o~;, we obta in  that  for even values of  k the masses  are given 
by Eq. (4.46) with A ~ replaced by A § + A _ and 

A(J) =A+c+ + A _ c _  j_~/,, (4.52) 
A + + A  

(as before, only the dominan t  te rm should be kept) ,  while for odd  values 
of  k we have 

A+ m , ~  
- - 1 <  lim VN, k ( J ) =  < 1  (4.53) 

J-+~_. A +  + A _  

Therefore  the odd-spin  sector  of  the theory is always noncritical,  while the 
even-spin masses go to zero at  the same rate for all even k. It  follows that  
the mass  rat ios Ylu. ,  ~mN. 2/mN.k a r e  zero for odd k and nonzero  for even 
k. I f  p >  0~+ l /n,  we reobta in  the R P  N -  1 universali ty class (4.27), while in 
the other  cases an infinite n u m b e r  of  new universali ty classes appear .  

4.1.4. An Example in M o r e  Detail .  Finally, to examine  more  
closely the possible universali ty classes, let us consider  the special case in 
which there are only two possible maxima ,  namely  those at t = +_ I. This  
generalizes the two cases studied in Section 4.1.2: in that  section we 
required h'( _+ 1 ) ~ 0 (i.e., n _+ = 1 ), while now we lift this restriction. Let n + 
and n_ be the orders  of  the first non-vanishing derivatives at  t = + 1 and 
t = - 1 ,  respectively; we will suppose  n+ > ~ n  (since we are considering 
only theories of  types I and II).  Then,  f rom the previous discussion we find 
four cases: 

Fo r  Hami l ton ians  of  type I, namely  n _  < n + ,  formula  (4.46) becomes  

raN. k(J) ~ c + 2N. k + [ 1 -- ( -- I )k] A _ (4.54) 
j I / ,+  j I l - ~  A + 

with 0c--0~+ and f l - - -~_ .  
There  are therefore three possibilities: 

(a) I f n _ < [ ( N - - 1 ) / ( N + l ) ] n + ,  we get 

mg. k(J) ~ A(J)2N. k (4.55) 

for all k, with A ( J )  given by 

A ( J )  = c + J -  j/" + (4.56) 

Therefore,  the model  belongs to the N-vec tor  universali ty class. 
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(b) If n+ > n _  > [ ( N -  1 ) / (N+ 1)] n+,  we then have 

f A ( J )  2 u Ir for k even 
mu'c" (J )~ (2 (A_ /~4"+)J - t t~ -~ ' J  for k odd 

(4.57) 

with A ( J )  given by (4.56). Therefore all masses go to zero as J ~  + oo, but 
with different rates, so that in the limit the odd-spin masses are infinitely 
larger than the even-spin masses. The limiting mass ratios "~N.k are those 
of the R P  N-  t universality class. 

(c) If n = [ ( N - 1 ) / ( N +  1)] n+ ,  both terms in (4.54) contribute at 
the same order. We obtain 

~A(J) 2 N k for k even (4.58) 
mN'k~"(A(J)( , , ] . ,v . l .+B ) for k o d d  

where A ( J )  is given by (4.56) and 

2A_ 
B = - -  (4.59) 

c + A +  

is a positive constant. So we get an infinite number of different continuum- 
limit theories, parametrized by B. Notice that 0 < B <  o~; therefore, the 
N-vector and the R P  N-  ~ universality classes are not included as particular 
cases, but only as the limiting cases for B ~ 0 and B ~ + ~ ,  respectively. 

For  Hamiltonians of type II, namely n_ = n+,  we have: 

(d) The masses are given by Eq. (4.53) for k odd and by 

raN. k "~ A(J)2N.  i,. (4.60) 

for k even, where A ( J )  is as in (4.52). This case clearly belongs to the 
R p u -  i universality class. 

4.1.5.  I n t e r p r e t a t i o n .  We want now to interpret these results in 
another framework. In one dimension a continuum field theory is simply a 
continuous-time Markov process on the target manifold. Now, the gener- 
ator of a continuous-time Markov process is the convex combination of a 
diffusion part (a second-order elliptic differential operator) and a jump part 
(a positive kernel) (ref. 41, Example 1.2.1, p. 6; Theorem 2.2.1, p. 48; 
Theorem 2.2.2, p. 51 ). Physically, this means that the "particle" diffuses 
for a while according to the specified differential operator, and then, at 
exponentially distributed random times, jumps according to the specified 
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probability kernel. On the sphere S N - I  for N~>3, the only S O ( N ) -  
invariant second-order elliptic operator is the Laplace-Beltrami operator 
(and multiples thereof); thus, the only SO(N)- invar iant  diffusion on S N- 
is standard Brownian motion (with an arbitrary coefficient, corresponding 
to a rescaling of time). 34 On the other hand, there is an infinite-dimensional 
family of possible SO(N)- invar iant  jump kernels K: indeed, one can specify 
an arbitrary probability distribution of jump angles 0 e [0, rt] [and S O ( N )  
invariance then determines K uniquely for N>~3]. Each one of these 
quantum Hamiltonians ~r=  aZP + K (a ~> 0) defines a legitimate continuum 
a-model. 

Moreover, for each such quantum Hamiltonian _0 and each t > 0, the 
integral kernel e x p ( - t ~ ) ( ~ ,  ~') is a smooth O(N)-invariant function of 
and ~' (and thus a function of a . ~ ' ) ;  it can therefore be realized as 
exp[~ �9 ~ ')]  for a suitable smooth potential ~U,,. Thus, by taking some 
sequence t +0, we see that each continuum a-model can be realized as a 
continuum limit of lattice a-models [i.e., discrete-time O(N)-invariant 
random walks on S 'v- ~], each of which has a smooth step distribution 
exp[ 7r(~ �9 ~')].  

We can now interpret formula (4.46): the continuum limit of this 
theory is a Markov process on S N- ~ which contains a jump part with 
jump angles 0i = arccos t;. The coefficients Ai are related to the probability 
distribution of the jump angles. The typical configuration here, for large J, 
consists of ordered domains where ~,..~.,.+ ~ ~ 1 separated by links where 
a jump  occurs, that is, where ~,..  ~,.+ ~ ~ tl. Notice that these jumps must 
be sufficiently rare, otherwise they destroy the order and thus no criticality 
appears (this occurs in case 4 of our classification, i.e., when ~ = e), but 
not too rare, otherwise they are unable to change the critical behavior of 
the system (this is the case when eci> fl). Jumps of lr (which are simply spin 
flips) play a special role: the spin-k correlations for k even are insensitive 
to spin flips, and thus they remain critical irrespective of the frequency of 
such flips. In particular, for theories of type II these spin flips are infinitely 
rapid, and the continuum limit is best considered as a Markov process on 
R p N -  i = S N-  I/Z2, 

4.2. F in i te .S ize-Scal ing Limit  

4.2.1. General i t ies on the Fini te-Size-Scal ing Limit.  We 
want now to discuss the finite-size-scaling limit for theories of types I and 
II (see Section 4.1.3 for definitions). This limit is given by L ~ 0% J ~  + ov 
[hence ~(J;,v.k c o ) ~  ~ ,  where ~t~A., denotes any one of the correlation 

~4 This is true also for N= 2 if one demands OIN) invariance and not just SOIN) invariance. 
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lengths ~,N.*Y{Z~d} or ~ x ~ .  in t roduced earlier]  in such a way that  ",u.*~;~c # }tJ., ~ ) / L  

remains fixed. 35 We therefore define the scaling variables 

,~(exp)[ ]'. 
Z k = Z k t r ;  r a  ,._,j ~ ,  00) (4.61) 

L 

When  considering correlat ion functions in x space we also scale x, i.e., we 
will consider x = , ?L  with 0 ~< ~ <  1 fixed, the cor responding  correlat ions 
represent the correlat ions of a c o n t i n u u m  theory in a periodic box of 
width 1. 

Everywhere in this section, for theories of type II or those theories of 
type I be longing to the R P  N - t  universal i ty class [see case I(b2) in 
Section 4.1.3 and case (b) in Section 4.1.4 36] k must  of course be even, and 

in all the formulae below only even values of l and  m are to be included 
in the sums. 

As we have seen in Section 4.1.1, the theory displays critical behavior  
only if the masses m N . ,  go to zero in the limit J ~  + c~. Therefore, in this 
section we assume that  

vN. k (J )  = 1 - -  ~l lN.  ~.A(J)  + o ( A ( J ) )  (4.62) 

where A ( J )  is a nonuniversa l  scale factor (assumed strictly positive) which 
goes to zero as J ~  + ~ .  The quant i t ies  ~N.k characterize the universal i ty 
class of the theory and are completely defined modu lo  an overall cons tan t  
which can be absorbed into A ( J ) .  Since V N . k ( J ) <  1, we have aN., > 0. For  
the N-vector universali ty class, the coefficient ~N. k can be simply defined by 

tTN. k = / ] ' N .  k (4.63) 

where 2N., are the eigenvalues of the Laplace-Bel t rami  opera tor  on the 
sphere. For  the R P  N -  ~ universali ty class the same holds for even k. For  the 

.~5 Similarly to what we did in Section 4.1.1, we could consider a sequence ( . ) "  of finite- 
volume lattice models with linear lattice sizes Lt"--* ~. A finite-size-scaling limit ( =finite- 
volume continuum limit) yielding a continuum box of side L Ir176 (0<LIc~ CC) is 
defined by rescaling lengths by factors .E "~= LI"~/L cr176 ( ---, w~) and rescaling field strengths 
by factors -~,v."~ such that the spin-k two-point functions have well-defined limits. Without 
loss of generality we can set L ~~ 1. 

3r In these two cases, the masses of the even and odd sectors go to zero with different rates. 
As explained in the remark at the end of Section 4.1.1, A(J) is chosen to be of the order 
of the smallest mass of the theory (that of the even sector) and it can be seen that for k 
odd, V,v.~.(J) L goes to zero exponentially in the finite-size-scaling limit. Therefore, the odd 
sector does not contribute to the finite-size-scaling functions, just as for case (a) of the 
RP x -  ~ universality class. 



1D O(N)- Invariant Spin Models 613 

other universality classes, which include jump processes, the coefficients 
5N, k can be easily derived from (4.43) for theories of type I and its 
analogue (4.51) for theories of type II. 

Now, from (4.61)-(4.62) and (3.24)/(3.26), it follows that for large J 
we have 

z ,  ~ 1/[ SN. k L A ( J )  ] ( 4 . 6 4 )  

Therefore, instead of considering the limit L, J ~  ~ at z, fixed, we will 
equivalently consider the more convenient limit at L A ( J ) =  y fixed, since 
the parameter y will appear naturally in our formulae. Let us then define 
the variables 

1 1 
- (4.65) 2 k = 5,(J;  L) =-~tN.kLA(J) ~lN, k7 

(To leading order 37 we have z,  ~ f , .  The distinction between zk and _~. will 
become relevant only when we consider corrections to finite-size scaling.) 
Our approach will be to compute various quantities as a function of y, and 
then use (4.65) to reexpress everything as a function of 5~ or z2. The reason 
for this last step is that functions of y are universal only modulo a scale 
factor [corresponding to the arbitrariness of A(J)] ,  while functions of 
physical continuum quantities (such as the fk) are universal tout court. 

4.2.2. Computation of the Finite-Size-Scaling Functions. 
We want to compute the following finite-size-scaling functions: 38 

ZtNO'(y) = lim ZN(J; L)/FN.o(J) L (4.66) 
L . J ~  cc, 

}, fixed 

G(O) t = N, k~.~, y) -- lim GN, k ( ~ L , J ; L )  (4.67) 
L , J ~ c c  

y fixed 

XCN0)k(7)~- lim ')(N'k(J; L) (4.68) 
" L , J ~ c c  L 

)' fixed 

Y : i 2 n d ) / r "  L) 
~(2nd){0)[ .~ "~N. k ~ N,k ~,Y] = lim (4.69) 

L , J ~ o - _  t 
7 fixed 

~7 More precisely we have 

lim :k(J;  L) lim -q~~P~- eN.k aNj, A(J)= 1 ~_,+~,_. 5,(J;L) . i -+~,  
3s The superscript ~o) indicates "leading order." The first corrections to these finite-size-scaring 

functions will be computed in Section 4.3. 
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Concerning XN.k and ,~2.d~ it is often convenient  to look at  the rat ios ~ N , k  ' 

XN, k ( J ; L )  
R z. N . k ( J ;  L) ~ (4.70) 

" Xu. , ( J ;  do ) 

,,t:i2nd)(l" I "1 
,[,,~ ",,'4 4- ~ -- , ~ ~ R~: N. k( J ;  - ,  =- ~ ~--~ (4.71 ) 

Note  that  by (3.22)/(3.23) we have 

/l(~N. 4.(J; dO ) 
2 

2L_~, (4.72) 
aN.kA(J)  

1 
,~xp , ( j ;  co) ~ L~k (4.73) ~k~! ' ( J ;  c o ) ~ , . ~ . k  

aN,  k A ( J )  

Hence the rat ios have well-behaved finite-size-scaling limits: 

.RIO,) .' ,, z: N.~-W) - lira 
L , J ~ o "  

y fixed 

Rz. a,. k ( J ;  L) = I - .. ~ a N , ,  tZ{ ,v~ ( 4 . 7 4 )  

R(O) l i m  
L. J ~  ,:c 

~.' fixed 

R,~: ,v. 4.(J; L) - ~,2.d,.),1 = aa,.,yc, u. k ~y) (4.75) 

The compu ta t i on  of  the finite-size-scaling functions (4.66)-(4.69) is 
s traightforward.  In the limit L, J--* do with y fixed, we have 

ON.k(J)L--,, tT~r/A(J) . . . .  { ~A--~) ~ } --UN. 4A..J I ~ ,~l~ log[1 - -au.  kA(J ) ]  

exp( -- Ya,v. , )  (4.76) 

Insert ing this limit in the exact expressions (3.13)-(3.15) from Section 3.1, 
we obtain  

2ko,,(y) = y '  j(/~,./e-~.s~,,, (4.77) 
/ = 0  

_ _ _ 1  ~ ~Nzk. C,,,e_r~.,,.,e_~,.~,fA.,.,, 
G"~ ~') 2~(9, )  ,.,_=,, .SN., (4.78) 

_ _  ' e - tax. / 
(o) 2 ~ ~ ' ;  ,~-. / .... (4.79) 

X N ' 4 " ( ~ ) )  = ~}'21N0)(~)) / , ,  = 0  ~4fN-/r Z J N ; I  . . . .  

~- O ~ -~ 1/2 r 1 , rE,  . . . . .  o [ u:4-.,.,,,(7)/37~:,.,,,] 
= -  - ~ - - -  - -  B - - - -  I (4.80) N., r ~ ' (  ~]/.- .. . .  o N:k.L,,,(Y) 
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with 39 

~N; / .  ,'h' ~ aN. m -  aN. /  (4.81) 

B N .  k i , , , ( ) ~ ) - ~ c ~ v z k ,  l . , , , e - ; 'a 'v"  ~ A U : l  .... (4.82) 
" " " 4re'- + 72A~:  I .... 

Let us notice that (4.77) can be rewritten as 

21,~ = Tr exp( - 7~) (4.83) 

where ~ is the operator that generates the continuous-time Markov process 
corresponding to that universality class. For type-I theories (except the case 
belonging to the R P  N -  i universality class), the trace is taken in the space 
L z ( S ^ ' - L ) ;  while for type-II theories (and for the case of type I which falls in 
the R P  N -  i universality class), the trace is taken in the space L2(Rp'v-I) ,  
which is isomorphic to L2(S N - ~ )  . . . . .  = ~ he-t-= O, k . . . . .  E N . ,  and consists of the 
even  functions on S N -  ~. Physically, (4.83) expresses the fact that the finite-size- 
scaling limit corresponds to the continuum theory in a finite periodic box. 

Notice that since the coefficients ~N.k are uniquely defined by the 
universality class of the theory, modulo a k-independent rescaling [which 
depends on the explicit definition of the scaling factor A ( J ) ,  but does not 
affect the products ~ x . ~ ? ] ,  these finite-size-scaling functions are universal 
modulo a rescaling of 7'. 

4.2.3. An Interesting Family of Universality Classes. Let us 
examine in more detail the finite-size-scaling curves for Rz:u.k(J; L). In 
particular, we want to study their dependence on the different universality 
classes described in Section 4.1. As can be seen from the explicit expression 
of R~,v k(Y), the finite-size-scaling curve is determined completely by 
{ 4,\,. ~i ~'herefore, we consider a family of universality classes parametrized 
by a continuous variable B, with &N., given by 

2,vl/ for I even (4.84) 
aN. I = ~'N I "]- B for l odd 

~') As mentioned in footnote 19, expression (3.15} for Zx.k requires some exegesis whenever 
rx. t = V,v. ,,,; ~nd correspondingly (4.79 }/(4.801 require exegesis whenever fix. t = ~,v. ,,,. In 
such cases the combination [exp(-~'6:v.t)]/A,v:~ ..... which occurs in (4.79) and in the 
numerator of (4.80), should be interpreted as �89 exp(-~,~i,v.t). This can be seen by going 
back to [3.14); it can also be obtained by the "quick-and-dirty" method of symmetrizing in 
/ and m, treating the 6,v.t as if they were independent variables, and using THfpital 's rule. 
Note that in the N-vector and R P  'v- t universality classes this problem occurs only when 
I = m  (and hence k is even}. However, in the more general case (4.84), for certain values of 
B one may have &u.t=~x., , ,  for / # m  (but only where l - m  and k are odd). 

822/86;3-4-11 
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[This family of universality classes was found in part (c) of the example in 
Section 4.1.4 and will be also found for the two-parameter Hamiltonians 
treated in Section 5.] We can get the N-vector universality class by 
choosing B = 0 ,  and the RP N-' universality class by taking the limit 
B - - *  o o .  

Let us first look at the isovector sector (k = 1 ). In Fig. 1 we plot 
RCOl ~(y) for various values of the parameter B, using as an example N = 4 .  z ; N .  
The graphs are drawn not as functions of )', but as functions of the more 
"natural" variables ~. -1/(6N, k)') defined in Eq. (4.65). In Fig. la we plot 
versus i t ,  while in Fig. lb we plot versus s different aspects of the 
behavior can be observed in these two plots. 

A few interesting features that can be seen in the graphs for N = 4, and 
that can in fact be proven easily for arbitrary N, are: 

(i) In the limit )' ---, 0 (i.e., i t ,  ~2 ~ co) we have hmy" __  0 Rz:(OJN. I t ( ) ' )  ---- 0 
(for finite B). More precisely, an expansion for small )' of Re01 k(~" B) for 
arbitrary k gives 

R,o, k(y B) _ ~ 1 ( I T )  ; =aN, k-~[lq'-O()')]=~'~-~-k-O (4.85) z : N ,  

independent of B. This behavior is observed in Fig. l a, where the dashed 
curve represents (4.85). 

(ii) For  0~<B~<2 the curve is decreasing at small it  (or i2), while 
for B > 2 it is increasing: this can be seen from a large-), expansion of 
R~Ol Z; N. I()')" 

(iii) limB_ Rio~ ~. "'z: N. t()'; B) = 1 for all fixed ) ' > 0  (i.e., all fixed z2 < oo). 
This behavior is observed in Fig. lb. 

Let us next look at the isotensor sector (k = 2). In Fig. 2 we plot the 
ratio ,o~ Rz;N,  2()' ) as  a function of z, for three different values of the 
parameter B, for the case N = 4. Figs. 2a and 2b show the same curves, but 
emphasizing different ranges of the variable i2. A few features that can be 
seen in the graphs for N = 4, and that can also be checked from the explicit 
formulae for general N, are the following: 

(i) The curves are monotonically decreasing functions of the family 
parameter B for each fixed value of the abscissa i 2. [We can write 

R~Ot , . _ ; ; , ~ o )  t . .  ~o) 0 ~ RiO~ , z: ̂ T. k t)'' B) - "'z: N, kw,  0)  --  [ R z :  N./,-()';�9 1 - -  x z N .  k ( ) ' '  , 00) ]  

x ; ~ ' e ( y )  ~. (1-e-"e)"+t(Z~'~ (4.86) 
2~'(r)  .,=0 \ 2~() ' )  l 
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J O  

~: 0 . 5  

F S S  f u n c t i o n  f o r  ,~*N.k: N 4 ,  14. = 1 

' ' ] - ~ - ~ '  ' I . . . .  I . . . .  

~ 1/I 

0 . 0  . . . . . . . . .  I . . . .  i : , 

0 2 :3 

Z 1 

F S S  f u n c L i o n  f o r  X N , k :  N = 4 ,  k = l  

1.0  

~ O5 - 

B = 2  

( b )  ~=o 

o .o  . . . .  h . . . .  I . . . .  I . . . . .  I , , ,  
0 . 0  0 . 2  0 . 4  0 . 6  0 . 8  1 .0  

Fig. I. Graph of  the ratio Rqmz: '̂. ~ as a function of  (a) -~ and (b) 52, for the case N = 4 ,  f o r  

the h~mily (4.84) o f  universality classes, la )  The lowest curve corresponds  to B =  0, which is 
the N-vector universality class; the highest curve is B = 20; the third solid curve is the limit 
B ~  + ~ ;  and the dashed curve is the asymptot ic  behavior (4.85). (b)  The lowest  curve is 
B = 0: the next three curves are B = 2, B = 8, and B = 20, respectively; and the straight line is 
the limit B---, + ~ .  

'~22j86.3-4-1 I* 
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F S S  f u n c L i o n  f o r  XN,k: N = 4 ,  k = 2  

. . . .  I . . . .  [ . . . .  I . . . .  

1.0 ~ B = ~ ~  

0.5 l 

( a )  

o.0 . . . .  I . . . .  I . . . .  I . . . .  

0.0 0.2 0.4 0.6 0.8 

G 

F S S  f u n c t i o n  f o r  ~N,k: N = 4 ,  k = 2  

. . . .  I . . . .  [ . . . .  I . . . .  

1.0 

0.5 \ 
(b )  

o.o i ,  I . . . .  I . . . .  I . . . .  

1 2 3 

1(11 Fig. 2. Graph of the ratio Rz: N.-' as a function of 5=, for the case N = 4, for the ~amily (4.84) 
of universality classes. (a) The highest curve is B =  0 and corresponds to the N-vector univer- 
sality class; the lowest curve is B = co and corresponds to the the R P  ^ ' -  ~ universality class; 
the curve in-between is B =  1. (b) The upper curve is obtained for B = 0  and the other for 
B = + cz~; the dashed curve is the asymptotic behavior (4.85). 
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where 2(u ~ (or  Z(N ~176 is Z(N ~ with the sum restricted to even (or odd)  l, 
and all the 2 u ' s  are evaluated at B - - 0 .  This proves the monotonic i ty  in B 
for fixed 7-] 

(ii) The curves coincide exponentially rapidly for large f_~ (i.e., 
small ),). Indeed, for k even, the behavior  for small ? is (see Appendix B.6) 

R~O) t .. B ) = ~ P A , . ~ - ( 7 ) [ 1  + O(e-'-'/4r)] 
2"; N,  k~ / (4.87) 

where PN�9 is a polynomial  independent o f  B. (More  precisely, in 
Appendix B we shall prove this behavior  only for k = 2, but  we conjecture 
that  it holds for all even k.) This is why the dependence on B disappears 
in Fig. 2b long before the curves show the asymptot ic  behavior  (4.85). 
Physically, the behavior  (4.87) reflects the fact that  the universality classes 
(4.84) are equivalent at all orders o f  per turbat ion theory; the B-dependence 
is a wholly nonperturbative effect�9 A similar situation occurs in the two- 
dimensional  cr-models} 5 71 

(iii) The curve for the R P  N- ' case is not monotonica l ly  decreasing as 
a function of  ~-,_, but  is slightly increasing for small _Q,. (In fact, an expan- 
sion for large y shows that  the function is increasing at small e~ for all 
values of  B.) 

4.3. Correct ions to Fini te-Size Scaling 

In this section we shall compute  the corrections to the finite-size-scal- 
ing functions. We assume a large-J expansion of  the form 4~ 

VN.k(J ) = 1 --SN. k A ( J ) +  ~)u. kA ... .  (J) + o ( A  .... (J)) (4.88) 

where A .. . .  (J ) /A(J)  goes to zero for J---+ + co. 
In the limit J ~  + c o ,  L ~  co at L A ( J ) =  7 fixed we have 

VN, k(j)L=exp(__ygtN, k) [ l + ),'~N k .... (J) }' -~ 
�9 A(J)  ~ a~,. 

kA(J)  + o 

= exp( --),gtu. k)[ 1 -- 7DN. kA(J)  + o(A(J))]  

(A(j), A .... 

(4.89) 

4o In Section 4.1.2 we computed ~IN, k and b,v.k for two simple cases of Hamiltonians h(t): 
li) t = I is the only absolute maximum and h'(1 )> 0 (this generalizes the N-vector model); 
and (ii) t = +l  are the only absolute maxima, h(l) is an even function, and h'(l)> 0 (this 
is the symmetric subcase of what we called in Section 4.1.2 the "second simple case": see 
footnote 30 and the text following it; it generalizes the RP N- ' model). As discussed before, 
we look only at the even-k sector in case (ii). In both simple cases we obtain the same coef- 
ficients 5a,.~., L'̂ ,.k [cf. (4.19)-(4.21)]; and we have A(J)~ l/J, A~orr(J)~ l/J z. 
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where A(J) is the more slowly decreasing of A .... (J)/A(J) and A(J), and 
--bu.k is the corresponding coefficient. [Of  course, if A(J) and 
A .... (J)/A(J) are of the same order, then --bu, k is given by the sum of the 
two coefficients. ] Plugging this expression in (3.13)-(3.15), we immediately 
obtain the corrections to the finite-size-scaling functions. Notice that the 
procedure is straightforward, and by adding more terms in the expansion 
(4.88) we can compute the corrections to any arbitrary order. For example, 
for the susceptibility we obtain 

XN.k(J; L) = L[z~.}t.(y) + Z~U~'k(y) ,~(J) + o(A(J))] (4.90) 

where 

2 ~*~ cg~:k.,.,,,e-ra""[b,v,-b,v,, , 
-ca, Y. ya,,., 

" y Z  N ( y )  / . . . . .  o . . . . .  

_ _ _  r,,,v " b  u . ( 4 . 9 1  ) 

~ 2 ~ ' ( ) , ) . = o  " 

In the same way, the ratio Rz: u.k(J; L) defined in (4.70) is given by 

Rz. uk(J;L)=e(~ k ( ) ' ) +2 ( J ) m~l  k(7)+o(X(J))  (4.92) . ,  �9 * ' Z ;  N .  * ~ Z :  N ,  

with 

=~- F /~N k ,0, 1 R(x!)N . ,k() ' )  25N'k k ; (~ ' �91  (4.93) 
N.k .] 

where we have used (4.74) and the expansion 

2 [ l bX k A(J)+o(.~(J)) 1 (4.94) XN, k(J; cto) 5u. kA(J) --Sulk 

These formulae simplify considerably in case ~SN.~. has the simple 
structure 

bN. k = ~IN, k CN (4.95) 

for some coefficient CN. In this case we obtain the simple formulae 

d (o) 
Z(~.)k(Y) = C N)' -~7 Z,v. k(Y) (4.96) 

R(t) k(y)=7 d 
z;N.  2CIN, I..-CN-'~ [ Yg~,'k(Y) ] (4.97) 
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In part icular ,  the two simple cases ment ioned  above (see footnote  40) 
satisfy this requirement  with 

CN=(N+ 1) r +  1 (4.98) 

Indeed, we have here A . . . .  (J)  = A ( J )  2, so that  A ( J ) =  A(J)=-1/[2h'(1)J] 
and /~u k ~ - 2  - -bN.k '  the claim then follows f rom (4.19)-(4.21). Note  �9 = 5 - a N .  k 

that  R r z:N,~()') here depends on r only th rough  the global factor 
( N + l ) r + l .  

We now study in more  detail the classes satisfying (4.95). 
In Fig. 3 we show the correct ion to finite-size scaling for the spin-1 

susceptibility for the N = 4  and N = 8  N-vec tor  universali ty classes [CN 
given by (4.98) with r = 0 ] .  We plot  as a function o f f t  [defined in (4.65)]: 

�9 Points: the difference 

[Rz:N. t (J ;L)-Rm~ ( y ) ] L  (4.99) * ' Z :  N. I 

for the N-vec tor  model  (with N = 4 ,  8 and for different lattice sizes). 

~,~1~ t(Y) given by �9 Curves: the cor responding  limiting curves "'z:N. 
(4.97)/(4.98) with r =  0. 

0.4 

T , , , I , , ,  ' L  . . . .  I . . . .  

Corrections Lo FSS of XN, I(Z-I) 

I N=4 

o.2 ~,~' - 

ff 

0 . 0  , , I  . . . .  I . . . .  [ . . . .  
0 . 0  0 . 5  1 . 0  1 . 5  2 . 0  

z 1 

Fig, 3. Corrections [R~ .~l(J;L)-R~i~x,l(),)]L to the finite-size-scaling function of 
Rz: .v. t(J; L} for the one-dimensional N-vector model as a function off~, The upper and lower 
curves correspond to N=4 and N=8, respectively. Symbols indicate L = 4  (*), 8 1+ I, 16 
( x ), 32 ( [] ). The function (4.97) (Ibr these two values of N) is also plotted�9 
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Now we can compare the corrections shown in Fig. 3 to the corrections 
for the case in which we choose zt =~%~(J;  oo)/L as the variable in the 
abscissa. As was done in the previous section, we must replace 7 in formula 
(4.92) by its expansion in terms of z k to the desired order, given by 

'I  ] ) , = ~  _ 1 - ~  A(J)+o(A(J)) (4.100) 
aN, k'~k aN. k 

We get 

Rz:N.,(J;L)=R(~ (~ - -~ )+o (A(J ) )  
* ' Z ; , ' V .  I \ A.k.~k (4.101) 

That is, there are no corrections at order ,4(J) in this case; in other words, 
the corrections of order 1/L found for Fig. 3 are not present here! Empiri- 
cally it appears that the leading corrections are in fact of order I/L2: see 
Fig. 4. (The limiting curve shown was evaluated numerically by taking a 

C o r r e c t i o n s  to VSS of ,yN,j(zt) 
i i 

I 
0.:3 

E % 

?... 

~ 0 2  
oe  

i 
,_J 

0 . 1  

0.0 ~' 
0.0 

' ' I . . . .  I ' - - r ' '  F . . . .  

I , i I ~  

0.5 

N=4 

, , , !  . . . .  ! . . . .  

1- .0  1 . 5  

z 1 

2.0 

Fig. 4. Correct ions [Rz:x . l (J ;L) -R "~ ~(7)]L-' to the finite-size-scaling function of  �9 z : N ,  

Rz: x. ~(J; L) for the one-dimens ional  N-vector model  as a function ofz~. The upper and lower 
curves correspond to N = 4  and N = 8 ,  respectively. Symbols  indicate: L = 4  (*}, 8 ( + ) ,  16 
( • ), 32 ( [] ). The corresponding limiting curve (nmnerical ly  evaluated for a large value of  L) 
is shown Ibr both cases. 
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very large value of L.) The same holds for the corrections to finite-size 
scaling written in terms of the variable 

•c2.0•(j; L) N . k  
x k  = x k ( J ;  L )  = (4.102) 

L 

that arises naturally in applying finite-size scaling to Monte Carlo simula- 
tions: see Fig. 5. 

The fact that the plot in terms of zk or xk shows better agreement with 
the finite-size-scaling curve than the plot in terms of fk can be interpreted 
as a manifestation of the difference between "scaling" and "asymptotic 
scaling." As used by lattice quantum field theorists, these terms mean the 
following (see, e.g., ref. 7): "Scaling" denotes the convergence to the 
continuum limit for dimensionless ratios of long-distance observables and 
for the relations between such observables. "Asymptotic scaling," by 
contrast, denotes the convergence to the asymptotic predictions (e.g., as 
J ~  ~ )  for the relation between long-distance observables (such as Z or 
or combinations thereof) and the "bare" parameters in the Hamiltonian 

o.3 ' ~ 1  . . . .  I . . . .  I . . . .  

% 
7< o.2 [3 + 

I 

j ~0.1 

0.0 ' * 
0.0 

C o r r e c t i o n s  to FSS of XN,l(zt) 

0.5 1.0 1.5 2.0 
XI 

Fig. 5. Graph o1" { [Z,v. i {J  L)/Z,v i J ;  "~l~l rvml (,)/~,)1 r-),,~1~I2 , . "~'J--L/~A'.I ~ "t,X'.l~--~'Jl~ as a function o f x l  for 
the one-dimensional N = 4  N-vector model. Symbols indicate: L = 4  (*), 8 ( + ) ,  16 ( x ) ,  
32 ( 0 ) .  The corresponding limiting curve {numerically evaluated for a large value of L) is 
also shown. 
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(i .e. ,  j ) .4 i  Clearly, asymptotic scaling (to a given degree of accuracy) 
implies scaling (to the same degree of accuracy), but not conversely; 
otherwise put, the corrections to asymptotic scaling may be much larger 
than the corrections to scaling. Now, Rz: N.k(J; L)~.,~N.k(J; L)/)(.N.k(J; 09) 
and z~.(J; r~ - ;.c~.,o Jtj. o~)/L are examples of dimensionless ratios of long- 
distance observables, while 5k(J; L ) -1 / [g tN .~ ,LA(J )  ] is an example of a 
bare parameter (by virtue of its explicit dependence on J). In this model 
the corrections to asymptotic scaling are of order 1/L, while the corrections 
to scaling appear to be of order 1/L 2. 

5. A TWO-PARAMETER FAMILY OF HAMILTONIANS 

In the previous section we investigated the continuum limits arising 
from a one-parameter family of interactions. One might imagine that, 
by considering many-parameter families of Hamiltonians and taking 
appropriate trajectories in the multiparameter space, one could find addi- 
tional continuum limits. We have investigated this problem for a two- 
parameter family of interactions given by 

h(cr. ~) = J,-~,-(6 �9 ~) + JThT(6" ~) (5.1) 

We will not study the problem for generic hv and hr,  but will restrict our 
discussion to the case in which hi- is  an odd function and has a unique 
maximum at 1 while h r  is an even function and has maxima at _ 1. 
Moreover, we will assume h 'v(1)> 0 and h ' r (1)> 0 and we will consider 
only the case J r ,  J r  >0.  This generalizes the mixed isovector/isotensor 
model 

JT ", 
h(a" ~) = J , .o"  ~ + ~ -  (~" "c)- (5.2) 

studied in refs. 5-7. 
We want now to find the critical points of these theories. Since m 

dimension d =  1 no phase transition can occur for finite values of the 
couplings, we must investigate the limit in which at least one of the two 
couplings tends to infinity. It is trivial to see that in the limit Jr--* + O9 
with Jv  fixed and finite one recovers the R P  N - ~ universality class; while in 

~] In place of the bare parameters, one may alternatively use short-distance quantities such as 
the energy E, inasmuch as they play a similar physical role. 
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the limit J~. ~ +oo with J r  fixed and finite one reobtains the N-vector 
universality class. It therefore remains only to investigate the case in which 
both J~. and J r  go to infinity. 

(a) Let us first consider trajectories such that J r / J j . ~ O  as J r ,  
Jr  ~ + oo. In this case, from (2.27), we get 

I l" ( aN,/," 4. 1 JT'~I 
F:v k(J,-,Jr)= f:v(Jv, Jr) 1 - - ~ v  0 ~-,--;-~., 

�9 d;" J;.Jl 
(5.3) 

where 

:,,, r(U)?'ll)),-N2 
J~v(J'"Jr)=[2zdT'(1)]'/2 \ 2 J \  2 J (5.4) 

au�9 2h'j.(1) 2U.k+ ( N - - 1 ) ( N - - 3 )  4 rv  (5.5) 

where •N.k a r e  the eigenvalues of the Laplace-Beltrami operator on the 
sphere and 

r ,. = h'~.(1)/h'v(1) (5.6) 

Thus, in this limit h r  is an irrelevant perturbation, and we get the N-vector 
universality class. 

(b) Next let us consider trajectories such that J r / J v = a  with 
0 < ct < c~. In this case we can rewrite (5.1) as 

h(~.  t) = J , - [h, . (~ .  t) + ~hr(tr" t ) ]  (5.7) 

This is a one-parameter family of interactions with Hamiltonian h which 
has a unique maximum at t = 1. Thus also in this case we get the N-vector 
universality class�9 

(c) Finally, let us consider trajectories such that Jr~Jr ~ ~ .  We get 
from (2.27) " 

Fuk(J , ' ,Jr)=fJv(Jv ,  J~fl 

[ (")]} + ( - - 1 ) k e x p [ - - 2 J , . h v ( 1 ) ]  1 + O  ~ r  (5.8) 
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where f,v(Jv, Jr)  is defined in (5.4), 

- f ' 
1 2 N . k + - ~ ( N - - 1 ) ( N - - 3 )  

a~,, 2~'~(1) 
and 

N 2 -  1 ] 
-4- r r  (5.9) 

r r -  h'~-( 1 )/h'r( 1 ) (5.10) 

It follows that 

V u . * ( J v ,  JT) ~ 1 aN.k 
J r  

[1 - ( -  1)*] exp[ - 2 J v h , - ( 1 ) ]  (5.11) 

where 

~'N,k 5A,,k - - -  (5.12) 
2h'r( 1 ) 

To go further we must distinguish three different cases according to the 
relative size of the two correction terms in (5.11), i.e., according to the 
behavior of the product J r  exp[ - 2 J i f  v( 1 ) ]. 

(i) Let us first consider trajectories for which J r e x p [ - 2 J v h v ( 1 ) ]  
goes to zero. In this case the exponential term in (5.1 l) goes to zero faster 
than the l / J r  term and can thus be dropped. We reobtain in this way the 
N-vector universality class. 

(ii) In the opposite case, when J r e x p [ - 2 J v h v ( 1 ) ] - +  +oo,  the 
leading behavior is given by 

1 l --ON.I,./J T for k even 
ON'I+(Jv 'JT) '~  - 2 e x p [ - 2 J v h v ( 1 ) ]  for k odd (5.13) 

so that 

~[lN.k/J T - for k even 
m N ' k ~ ( 2 e x p [ - - 2 J v h v ( 1 ) ]  for k o d d  (5.14) 

Thus for all k odd 

nIN, 2 t~N 2 
--  ~ 2 J r  e x p [ 2 J v h v ( 1 ) ]  --* 0 ~N,  k 1~7 N. k 

(5.15) 

so that these limits belong to the RP N-  i universality class. 
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(iii) Finally let us suppose 

Jr e x p [ - 2 J , , h v ( l ) ] - - * - -  

where B is a constant. In this case we get 

B 

4h~(1) 
(5.16) 

f l -- aN, k / J T  
ON, k(Jv, Jr) "~ B 

1--I~u.k+4~,r(1)l/Jr 

for k even 

for k odd 
(5.17) 

and 

1 ~'2,v, k for k even 
• (5.18) 

mN'k~2~'r(1)J r [2N, k + B  for k o d d  

Thus, for 0 < B <  ~ we find again the intermediate universality class 
(4.58)--interpolating between the N-vector and the RP ''-~ universality 
classes--which appeared already for one-parameter Hamiltonians with 
maxima at t = +__ 1. 

Let us notice that in this last case the even-spin correlation functions 
are equal to those of the N-vector model, while the odd-spin ones are a 
product of an Ising correlation and the corresponding N-vector correlation. 
This family of theories is parametrized by B (0 ~< B ~< ce) and all the limit- 
ing mass ratios ~u. J, are determined in terms of B as in Eq. (4.50). Equiv- 
alently, we can choose any one of these ratios (with k odd) to characterize 
the universality class; for instance, we can use the ratio 

~(exp ) 
l~l N, 2 N,  I ~tU. I -~ (5.19) ~{exp) 
r a N .  I ' ~ N ,  2 

In the continuum limit we have 

2N 
"~'N. I=]~__ 1 + B  (5.20) 

Thus each theory is labeled by the ratio ~N, I, which can assume any value 
from 0 to 2N/(N-1). Notice one special feature of d =  I: the maximum 
value ofm,v. 2/mN, B is not 2, but rather is larger. This is due to the fact that 
in (spacetime) dimension d =  1 scattering states cannot exist, so the usual 
inequality raN. -, <~ 2m,v. ~ does not apply. 
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PROPERTIES OF HYPERSPHERICAL 
HARMONICS 

A.1. Calculation of ,~N,k--dim EN. k 

Let us begin by computing the dimension of the linear space E;v. ~. 
consisting of the completely symmetric and traceless tensors of rank k over 
R u. This can be done by computing the dimension of the space of all 
completely symmetric tensors of rank k and then subtracting from it the 
number of independent trace conditions that have to be imposed to ensure 
the tracelessness of these tensors. The number of linearly independent sym- 
metric tensors is given by (U+k- k ) (the number of ways of placing k 
prisoners in N cells), and the number of traces is given by (u+k;-3) (the 
same binomial as before, but considering only k - 2  indices; of course this 
simply vanishes if k < 2). Therefore we obtain 

~ --dimE,x, k =(N + k - - 1 ) _ ( N  ; k -  (A.la) 

F(N+k) F(N+k-2)  
k!F(N) ( k - 2 ) !  F(N) (A.lb) 

N+ 2k-2  F(N +k-2)  
k! / ' ( N -  l) 

(A.lc) 

[with the interpretation ( - 2 ) ! = ( - 1 ) ! = o o  in (A.lb)]. This proves 
formula (2.2). 

We shall take (A.lb)/(A.lc) as the definition of ot'N. k for N noninteger. 
(By contrast, we shall always consider k to be an integer >t0.) Note that 
for each fixed integer k/> 0, ~"f'~v. k is a polynomial of degree k in N; in 
particular, it is well-defined and finite for all real N. Note also that for 
each fixed N (not necessarily integer), we have .I j" ~ 2k ' v - 2 / F ( N -  1) as " N .  k 

k ---~ c,o. 
The simple identity 

k(N +k-2)  
..'G;+2. ~--, = H~v.k (A.2) N(N- 1) 

will play an important role in Appendix B. 
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Finally, for integer N>~ 3 we have the following formula: 

2 
~ * (N--  2)! 

�9 , . = o  

for N even/> 4 

(A.3) 

for N odd >~ 3 

In particular, for even (resp. odd) N>~3,~4{v.k is an even (resp. odd) 
polynomial in the "shifted index" k+(N-2 ) /2 .  Note, however, that for 
N =  2, v'V'u, k is not a polynomial in k: for k >/1 we have ~v,  k = 2, in agree- 
ment with (A.3), but o4{v.o = 1 :/:2. 

A.2.  S o m e  Basic F o r m u l a e  

Let us now compute the integral of a product of an even number of 
a's (an odd number gives trivially zero). Let us introduce, for an arbitrary 
vector A~, the quantity 

Ik(A) = f d[2(~) (A" ~)2k (A.4) 

As ds is rotationally invariant, we have Ik(RA)=/k(A)  for every 
R~O(N), so Ik(A) depends only on IAI. Moreover, Ik is manifestly a 
homogeneous function of degree 2k. Hence we must have Ik(A)= Jk[ A 2] k 
for some constant Jk. Now, as a - '=  1, we get from (A.4) 

0 0 
OA~ OA, Ik(A) = 2k(2k-- 1) Ik_ t(A) (A.5) 

A recursion relation for Jk immediately follows: 

2 k -  1 
Jk-- Jk-t (A.6) 

N + 2 k - 2  

Using Jo = 1, we obtain the general solution 

F(k + 1/2) F(N/2) 
Jk = (A.7) 

F(1/2) F(N/2 + k) 
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Taking then 2k derivatives with respect to ,4 in (A.4), we obtain the well- 
known result 

F( N / 2  ) 
f dg2(a) a = ' . . .  a ~'~ - - 2 k F ( N / 2  + k )  

(6~m. �9 6~-"-'~'~ + . . .  ) (A.8) 

where the terms in parentheses correspond to the ( 2 k - l ) ! !  different 
pairings of the indices. 

Let us now prove the orthogonality relation (2.10). This is completely 
equivalent to proving that for arbitrary completely symmetric and traceless 
tensors Tu .k  and UN.~ we have 

If v,,,. .,,,,,.,1 ~' . . . .  kUl~'" ' l~ ' - -6  T UN d O ( a )  y~,,.i..~,k(a) -,v.t ,~ , j  T u . k  ,V.t -- k/ N.k" ,k (A.9) 

To prove (A.9), let us first use the definition (2.3) and notice that the 
"Traces" terms do not give any contribution, due to the tracelessness of 
TN, k and UN,~. Thus the 1.h.s. in (A.9) becomes simply 

r 

0 | d f2(a)  a ~' . . . .  a~'ka/~' "" a/~' TN.=' . . . .  k k ~rr/~'N,"l /~' fIN. kJ.l N, (A.10) / 

Then let us use (A.8). The only nonvanishing contributions come from 
those terms which do not contain 6 ~'~, or 6/~,/0; such terms exist only if l = k. 
In this last case there are k! equivalent contractions and we end up with 

Okff.lN, k [ 2 k ~ 2 ~ k )  k!J TN, k. UN, k=OktTN, k. UN, k (A.11) 

We thus obtain the orthogonality relation (2.10) for the Y's, provided that 
they are normalized as in (2.4). 

The general formula for the hyperspherical harmonics 42 can be 
obtained by using the fact that they are completely symmetric and 
traceless. The complete symmetry, together with the needed transformation 
properties under S O ( N ) ,  implies an expansion of the form 

Lk/2J 

Y u . k  (~r)=PU.k Y'. Ax.k:. , .Pik:. , . )(~r) (A.12) 
s = 0  

42 This result is obtained in ref. 27. Note that in their notation P includes all the k! permuta- 
tions, i.e., it is [(k-2s)! s! 2'] -~ times our P. 
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where 

Pck:.,-~ ~' .... *(~)=--fi~"~"- . . . . .  6~z'-t~'-'a ~'z'+~ -a~k+permutations (A.13) 

and the number of permutations necessary to make P,k-.,', completely sym- 
metric is (2s 1)!I k - -  (2.,)- Now we impose the tracelessness. We first note that 

.,~ (o)=P~i_2:.,.~(a)+(N+2k-2s-2)Po,_2:.,.  ~(a) (A.14) 

~ 1  " " " ~ t k  and therefore we get from d~_, YN.k (O) = 0  the recursion relation 

AN.k:.,'- I + (N + 2 k -  2 s -  2) AN.,:.,. = 0 (A.15) 

Imposing the normalization AN.k: 0 = 1, we find 

mN.k;s ~ - -  

Thus we can write 

( - 1) ~" F(N/2 + k - s  - 1) 

2 '~ F ( N / 2 + k - 1 )  

Lk/2J ( ) S F ( N / 2 + k _ s _ l )  
~1 " '  " r t k  

YN, k (~)=/~N,k Z ~ r ( N / 2 + k - - l )  s ~ 0 

(A.16) 

Let us now discuss the relation between the hyperspherical harmonics 
and the Gegenbauer polynomials. From Section 2 we know that YI ' I(a) 

N . k  

is the restriction to the unit sphere of a degree-k harmonic polynomial. 
Moreover, it depends only on a ~, so that the polynomial can be written as 
rkPk(x~/r), where r =  ]xl. Requiring the polynomial to satisfy Laplace's 
equation, we get for Pk(X) the equation 

, d2pk dPk 
(1 - x-) ~x2 - X ( N -  1 ) - d - ~ x + k ( N + k - 2 ) P k = 0  (A.18) 

The regular solution of this equation (ref. 37, p. 1031) is the Gegenbauer 
polynomial ru /2- t (X) .  The normalization is fixed by the requirement that 

~ k  

y~./. l(~) =#u .  k( al )k + lower-order terms 

We thus get 43 

yL...l(a)__N,k "~"~)-~N.-kN/2+k--l [ 1" ( N _  1 ~  r~N/~__t(a~)] 

43 Note that this formula is well-defined in the limit N-~ 2. See footnote 14. 

(A.19) 

(A.20) 

~1 " " " : z k  P,k:.,, (~) (A.17) 
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which, using the fact that 

c'~V/'-- '( l )= ( N + k -  (n.21) 

gives (2.23). 
Note that we could have derived (A.17) by using (2.23) and the expan- 

sion of the Gegenbauer polynomials (see ref. 19, formula 14, p. 294). 

A.3. The Projector onto Symmetric Traceless Tensors 

Using properties 1-4 of the projector r ~' .... k:/~,.../~, we can derive its " N . k  

general expression. We start by noting that the most general form satisfying 
the symmetry properties 1 and 2 is 

kk/2J  

U, .... ~:/~,.../~k_ ~ B..v.k:.,.Q~]i.(,k:/~,.../~k (A.22) N, k 
s = 0  

where 

Q ( k : s )  

+ permutations (A.23) 

(i.e., there are s c~'s among the cds, s among the fl's, and k - 2 s  connecting 
the cc's with the fl's) and the number of permutations necessary to make 
Qck:.,.~ completely symmetric is given by 

k! "~-" 1 (A.24) 
s! 2~J ( k - 2 s ) !  

Now notice that a consequence of properties 3 and 4 is 

"~u . . . ~ k :  l h  . . . # ~ -  V I h  . . . # k  _ , ,  r ~ l  " - ' ~ k :  l h  . . . # t , a # u  ~71Jk ~u . . .~ t , .  
I N ,  I..- - - N . k  --I~N.l':JtN. k . . . .  Y , v . k  (A.25) 

If we substitute in this expression the general formula (A.17) for y;).'k.~k 
and formula (A.22), we obtain 

2 "s ! 
BN" k:" = A N" k:" k! (A.26) 

Therefore we get the general expression 

~_k/2 j s! F( N/2 + k - s - 1 )  
~1-  , . ~k : l l l  . . . l f f  I,v.k = ~ ( - -1)  '~ 

.,-=o k! F ( N / 2 + k - 1 )  
Q~, .... ~:/~, "--/~ (A.27) ( k ; s )  
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We must  now check that  (A.27) satisfies properties 3 and 4. Proper ty  4 
follows immediately: 

:q...~k:/h...l~TIh...Ptk_L ~g'"~k:lh'"/~k T/h'"Sk--  ~l"'~k Iu.k  N.k - - k !  QIk:ol ~N,k -- TN.k (A.28) 

where in the first step we used the tracelessness of  TN. k and in the second 
its symmetry.  In order  to prove proper ty  3, let us introduce 

^ o q  �9 �9 �9 : t  k 2 s r  �9 " �9 : r  PIk:,l ( U ) - - ( U )  PIk:,~ (U) (A.29) 

L k / 2 J  

^ ~1 " " " : X k  A C X l  " " " ~ k  YN, I," (U)~/IN,/" 2 AU, k:sP~k:s~ (U) (A.30) 
s = 0  

where u is an arbi t rary vector. We note  that  

0 0 
^ ~ 1  �9 ' �9 ~ k  Oul~, 0u/~ k Pt*:.,.I (u) =2"s l  Q~'~.:.~:/~' ..4r (A.31) 

and therefore we can write 

UI . . . .  k:l~, " " I ~  = 1 CO CO ~1 . . . .  k 
u.~- ll,v. kk! C&~a~'"&% ~ u . k  (u) (A.32) 

Also, from (A.29), we obtain 

^ ~ t ~  �9 . . ~ - k  j~,~_,/5~_: .... .~ kt"~ -- U 2 P ~ 3 ' = '  -- --Ik-- 2:.,'l'k t u ~ + ( N + 2 k _ _ 2 s _ _ 2 )  Pik_2: ,_l~(u ) ,  (A.33) 

F rom this and (A.15) it follows that 

^~' . . . .  k(u) = 0 (A.34) 

and therefore proper ty  3 is satisfied. 
Finally, using (2.25), we can prove the trace formula (2.16). Indeed 

from the or thogonal i ty  relations (2.10), summing over all indices, we have 

I~..2. ~k: ,, .... k = I d(2(~) YN./,'(if) " YN, k( i f )  (A.35 ) 

The scalar product  in the r.h.s, is rotat ionally invariant and as such it does 
not depend on ~. Choosing ~ =  w - ( 1 ,  0 ..... 0) and using (2.25), we get 

IN.k~, .... k:'t .... *--__ Y N . / , . ( W ) '  Y,V.k(W)= Yk;s  I,.=JI@,I,. (A.36) 
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A,4. Expansions in Terms of Hyperspherical Harmonics 

We want now to discuss the convergence of the expansion (2.18). We 
will begin by showing the following result: given a generic (real) tensor 
T~A',i. ~ ,  the hyperspherical harmonics satisfy the inequality 

[ TN, k " YN.&(ff) ]2 <~ ( TN .k  " TN./,-)~ I~V.k (A.37) 

Indeed, using Schwarz's inequality and (2.25), we get 

[T,v.k " Y:v.k( f )[2 <~ (TN.k  " T;v.k)[ YN.k(6)' Yx.k(6)] 

= ( T : v , k "  Tx.k)[ Y:v.k(W) �9 YN.k(W)] 

= (  TN, k �9 TN. k)~'[#.,V,/,+ (A.38) 

Moreover, equality in (A.37) is possible only for those n for which 

TN.~' . . . .  k k = ), y,~t..i.. ~(~) (A.39) 

for some constant ~,. This requires first of all Tn. k to be symmetric and 
traceless. The constant ), is easily obtained squaring the previous relation: 

T N  k " Z v k ~,2 = . ' ' (A.40) 
+,1(u ,,.._ 

Now let us consider the special case Tx.~- = Y.u (W) with 
w = (1 ,  0 ..... 0) and k>~ 1. Equality in (A.37) is possible only if 

~ I  " " " ~.~"  x l  �9 �9 �9 2k Y N . k  ( f f )=- - - - t -YN,  k (W) (A.41) 

We will now prove that if N >/3, this implies ~ = _ w. Let us first notice 
that if a satisfies (A.41), then every a ' = R g  with R ~ S O ( N )  such that 
R w = w  also satisfies (A.41). Now if a~a +w, there exists an index c~val 
such that a ~ va0. If N~> 3, we can consider rotations R in the (~, fl) plane 
(with fl ~ 1 ) and generate solutions ~' with a '~ assuming any value between 
- a  ~ and a ~. This means that (A.41) with ~l . . . . .  c~k=~ has an infinite 
number of solutions, which is impossible, as this is a polynomial equation 
in a ~. Thus for N~>3 we must have ~ =  _+w. This result can easily be 

r ~  ..... I (1)>0,  it rephrased in terms of Gegenbauer polynomials: since ~ k "  
implies that 

Ic2 ''2- '(x)l < c2':'-- '( l)  (A.42) 

f o r - l < x < l  andk~>l .  
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For  N = 2  the previous result is not  true. Indeed in this case every 
~ = ( c o s  zcj/k, sin rcj/k) with j =  1, 2 ..... k is a solution of  (A.41). To show 
this, let us notice that  dim E2, ~. = 2 for all k, so that  there are only two 
independent equat ions to satisfy. Using complex indices _ = 1 +_ i2 and 
noticing that  ~ + + = 6 -  = 0 ,  we obtain 

Y+~.' + =/t2. ka + a + - eikO . . . .  /~2. k (A.43a) 

- -  - -  - -  . .  i k O  Y ~ k  - =~u2.~.a . - . a  --~'2. ke (A.43b) 

where ~ = (cos 0, sin 0). Therefore, Eqs. (A.41) are equivalent to 

eikO= ~ 1 (A.44a) 

e ik[! = + 1 (A.44b) 

which proves the result. 
To discuss the convergence of  the series (2.18), let us first notice that 

2 J z '  . . . .  ' 7 z '  . . . .  ' 
k = O  

z r  

f ~-I " "" ~ k  ~ l  "" " ~tk = ~. df2(e) d f 2 ( z ) f ( e ) f ( x )  r,,,.,,,. (~) YN.k (T) 
k = 0  

(A.45) 

Using the completeness relation (2.20), we get 

~, f'2' .... ~f~.' .... ' =  J d~a(~) I f (~) l -  (A.46) 
k = 0 

which is the Plancherel identity for harmonic  analysis in S A' J. N o w  let us 
consider, instead o f f i  the function 5r  where LP is the Laplace-Bel t rami 
operator.  In this case f~ '  ~ is replaced by 2u. k f  k , and thus we obtain 

2: 

~-A,.dk ' ~ J 2 '  : d~(~t  I~ ' f (~) l  2 (A.47) 
k = 0 

If now f is a C r'- function, the integral is finite for all n. Thus the sum on 
the 1.h.s. is converging for all n. As 2 <  ~. ~ k z for k ~ or, we get that, for 
every 17, k f k  " ~ f ~ "  ~ 0 for k ~ oo. This implies that  all coefficients 
J2-' .... ~ decrease faster than any inverse power of  k. To prove the con- 
vergence of  the series (2.18), it is then enough to notice that I YN. k I ~  < 
(,'l/~v.k) 1'2 and that ..C,v. k behaves for large k as k N 2. 

. . . .  86  3 - 4 - 1 _  
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In general we can write 

f(~" T) = ~ _-=' .... ~: ym--.#ht~.~ (A.48) f N : k . h  fll'"/#h O i l  ' " " ~ ' k  Y^'.k (o) N.k ~,'! 
k,h=O 

Invariance under rotations gives 

~l . . . .  t,;)'l...yk{R]T#l...[Ih:,~l...<~l,(R ) ~ y i  �9 �9 . } , k ;  < J l  . . . .  J h  ~ " " " " / J h  T ,v.k , ' ' ,=U.h  J,v:~-.h = f~.'~-'7, ~'#' (A.49) 

for every rotation R ~ SO(N). Then, by Schur's lemma, 

?~xt �9 " ~ , ~ : / t l  " "  "//J, " "  ~ , ~ : / / I  " ' "  N;k,h = f i k j ~ . k  #"Fu.k (A.50) 

so that 

f (o ' .~ : )=  L FN.k ]Z+V.k( t~)" Yu.k("c) (A.51) 
k = 0  

Let us now discuss the properties of the coefficients FN. ~. in (2.27). The 
second property follows immediately fiom the previous discussion. We 
want now to prove that, if f ( t )  is positive for t e l - I ,  1], then 
[FA,. k I<  Fx. o for k ~> 1. Indeed from the definition and (A.42) we get 

t C2 'p-- '( t)  
IfN'kl<~f_, dt(1-- tZ) 'u-3 ' /2 f ( t )  C2,/2z-~i  

I 

< f d l ( l  - - t2)(N-3) /2  f ( l )  
-1 

=FN.o (A.52) 

A.5. Clebsch-Gordan Coefficients 

Let us now discuss the computation of the Clebsch-Gordan coef- 
ficients (2.36). For arbitrary completely symmetric and traceless tensors 
TN. k, U^,. t, and VN. ,,, we want to compute 

dO(g) [TN.k" YN.k(g)]EUN.+ YN.,(~)][VN .... " YN.,,,(g)] (A.53) 
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Using the definition (2.3) of the hyperspherical harmonics, we find that this 
reduces to 

]~lN.k~lN. i l J N .  m f clD(~) [a  ~' . . .  a=~a I~' . . .  area r' . . .  a r'' 

X T ~ I  "''~-k T]'/~I ""i l l  }'l " "" }',,, 
- - N . I , "  ~ N . I  V N . m  ] (A.54) 

From this we see that the integral vanishes if k + l + m is odd. On the other 
hand, if k + l + m  is even, we can use (A.8). We must now compute how 
many scalars we can construct with the three tensors. It is easy to see that 
there is only one possible scalar, with the following structure: i indices of 
TN. k are contracted with i indices of VN. .... j indices of VN.,,, are contracted 
with j indices of UN. I. and h indices of UN. ~ are contracted with h indices 
of TN, k. Here i = ( k  + m - l ) / 2 ,  j = ( m - k  +l) /2 ,  and h = ( l + k - m ) / 2 .  Of 
course i, j, and h must be positive and this is equivalent to I I - k ]  <~m <<. 
l +  k. We must then compute the combinatorial  factor, i.e., in how many 
ways this scalar can be constructed. We find 

()()() k , , , m ,  k l m i! j !  h ! -  I (A.55) 
i h j i ~ j~h l  

Thus the integral becomes 

IIN. I./JN.I/AN.m k! 1! m!  T", . . . . .  i l ' l ' " l ' h  [ [  I , l ' ' ' l ' h c l  . . . .  ) ':1 '""IiCl . . . .  ) 
" k --u. k ~N. I VN. ,,, 

IG , .k+ j (  + J ) !  i ! j ! h !  
(A.56) 

Formula (2.36) immediately follows. 
Finally we want to discuss the computat ion of ~'~,:~..i,,,,. Using (2.36) 

and (2.34), we get 

t '  

~ 2 t ;  k .  I, m = J | " ~ '  {~ ] ~ N : k .  l. ~'l . . . .  k ; /]l " " " [~1; )'1 " " }',n 

~l "'"  ~-k y f l l  " ' '  x Y u . k  (~) --U. t /~'(0") Y~,'/,;r" '(o') 

[.lN. kllN. l~l N . . . .  k! l! m! 

ltTv. k+i(k  + j)! i! j !  h! 

f t~ 1 . . .  ~i[]l x df2(~) YN.k ' m ( ~ )  

X a N .  1"wi l l ' ' "  flh}'l " " ) : j ( ~ )  yy~" ' ) )~lA,  nt ..... (~) (A.57) 
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where i = (k + m - l)/2, j = (m - k + l)/2, and h = (l + k - m)/2.  The quan-  
tity which remains inside the integral is a scalar; as such it is a- independent  
and thus we can drop  the integration. 

To compute  the remaining contract ion,  let us use the general expres- 
sion for the hyperspherical harmonics  given in (A.17). Then a straight- 
forward combinator ia l  exercise gives 

P ~ I  .,, . . . .  I t , . . .m(,)  :u.Vl+t+ /t,,r,...r~(,) yr,...rmx. ,,, . . . .  ' (a) 

=s , ( , , ) ( , )o , , ,  + + o,,, , 

X YN."' . . . . .  I ; ' - ' " '  . . . .  ) + ' ( i f )  --N,YI""'!,,, . . . . .  ', . . . .  7+~(ff) (A.58) 

Note  that this gives zero if s > h or s > i. N o w  let us define Xk as 

a•y•@...l•,-t(a) vlq .../r 
A t. k ~ ' V k  ~ N .  k --  I ~ " !  (A.59) 

It follows that 

k ,1/ 
1-[ x,,, =a~ '  " " a ~  Y ~ k  ~'(") = ~ ,v.k 

m = I ]2 N. k 
(A.60) 

and therefore we obtain 

=,1%. k ]2 N. k - 
X k ~-- - -  _ _  

]2,',,. k ...'1~),,./,- - 

Thus (A.58) becomes 

( ) ( )  i r h i , I~V.i+., .o4N, I ' I N . , , , ] 2 N ,  I - - h + s  ]2N. . . . .  i + s  
S!  

. 4 / -  s s ] 2 N . I  ] 2 N  . . . .  " J ~ V . / - - / , + . ,  ' ~  N .  . . . .  i + s  

and we get the final result 

f fCTv:  k. t, , ,  

]2 ~.  k " l~v.  I ~ 'l~v. ,,, k ! 1 ! m ! 

]2~ , . k+j (kwj ) !  i ! j ! h !  

()() M ( ) ' F ( N / 2 + k - s - 1 ) s !  h i 

x ~ ~ F ( N / 2 + k - 1 )  s s 
s ~ O  

]2 7v. j + ,, 

4/- ~" N , / + s  

(A.61) 

(A.62) 

(A.63) 
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where M = min(Lk/2J, i, h) with i = (k + in - 1)/2, j = (m - k + l)/2,  and 
h = ( l + k - m ) / 2 .  We remind the reader that (A.63) holds only when 
k + l + m  is even and I I - k l  < ~ m < ~ l + k ;  in all other cases, ~N:k./.,,,=0. 

There is another way of computing CgN:k./.,, ,. Using (2.35), we can 
write 

r N: k. t. ,,, = I d ( 2 ( , )  dO(x )  [ Y,v. k(*) " YN, k(X)] 

X [ Y N . , ( ~  ) �9 YN.I( '~)][YN.m([~).  YN.m(X)] (A.64) 

The integrand is only a function of ~ .x .  Thus, using the rotational 
invariance of the measure, we can fix one of the two spins to an arbitrary 
value. Let us set T = w = ( 1, 0 ..... 0). We obtain, after integrating in dO(x), 

~f[~:k./.,,, = I dg2(~r) [ YN, k(~) - YN, k(W)] 

x [ YN.,(~) �9 YN.j(W)][ YN.,,,(~) �9 YN.,,,(W)] (A.65) 

and by using (2.23) we end up with 

SEN-- 

I x f d t ( 1 - t 2 )  'N-3' /2 C'~V/2-'(t) c N / Z - ' ( t )  c"N/2- t ( t )  (A.66) 
c" N/2 - ,( 1 ) C Na - 1( 1 ) c,,Na - ,( 1 ) --I ~k  

If one of the three indices k, l, m is fixed to some specific value, this integral 
is easily done using the recursion relations of the Gegenbauer polynomials 
and their orthogonality propertiesJ 37~ In this way we have checked the 
general formula (A.63) for k = 1, 2 and / ,  m arbitrary. 

A.6. 6-j Symbols 

In this section we will discuss briefly the 6 - j  symbols. In dimension 
d =  1 they appear in the computation of the four-point function (not 
treated in this paper), and in higher dimensions they play a crucial role in 
deriving high-temperature expansions even for the two-point function. 



6 4 0  C u c c h i e r i  e t  a l .  

Fig. 6. 

a 

c b 

Graph showing the spin assignments in the 6-j symbol .~,.v(a, b, c; d, e, f). Each 
vertex denotes a Clebsch-Gordan coefficient. 

The 6 - j  symbols (also called Racah symbols) are O ( N )  scalars defined 
by 

~.,v(a, b, c; d, e, f )  = ~ '  ...... :/~, ...m: >', ..-~', ~ ,  ..... :,~, ...,~,,: ,:, ....... N :  it, d, c N :  a, h, e 

x f f , ' + , - . - m : , : ,  . . . . . .  :,1, . . . .  !~~,~,  . . . .  ~ : y , . . . > ' , : , l ,  . . . .  Ij ( A . 6 7 )  
N:  d, ~', ./" N;  h, c, f 

See Fig. 6 for a graphical representation. The tetrahedral symmetry which 
is enjoyed by the 6 - j  symbols for N- -  3 t42~ is trivially true also for generic 

tl h N. A different conventional notation for N =  3 is {.r ,1 ~i}. 
We have not yet been able to compute a general formula for the 6 - j  

symbols, but we have computed a very large class of special cases: among 
others, those in which one of the spins (say, a) takes the value 1 or 2, while 
the other five spins take arbitrary values. This class of special cases is suf- 
ficient for computing the high-temperature expansion of the S N -  ~ a-model 
in general dimension d up to rather high order/29} 

We begin by deriving a completeness relation for the 6 - j  symbols. To 
do this, let us first prove two properties of the Clebsch-Gordan coefficients. 
Using their definition in terms of hyperspherical harmonics and the com- 
pleteness relation (2.20), we can easily prove the crossing relation 

- ~  ( ~  ~ 1  " " " ~ p :  / J ' l  " " "  i l k ;  ) '1 " " " ) ' / ( ~ 1  " " ~ ' / ' :  ~ l  " " " ~ m ;  I ; l  ~ ' "  I ; n  
~ N ; p ,  k,  I ~ N ; p ,  m,  n 

P 

= Y. ~ " ~ P :  ^,: . .  k. , , ,/~" .~,k: ,~, . - . , ~ , , , ~ . ) i  ~,~ y, ...,.,: ,~, .. . . . . .  

P 

(A.68) 
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The second re la t ion  we need, which follows immedia te ly  f rom Schur 's  
lemma,  is 

6 ~ 1  �9 " ~ k  ; / h  �9 �9 �9 l i t :  Y l  " '  ' Y m  6 , ~ =  ~ 1  " " ' ~ "  : / f i  " ' "  f i t ;  <~l " " " 5n 
N; k, I, m ~ N ;  k, I, n 

1 . . .  �9 - . �9 

, ~ N :  k .  I .  m = ~ . . . . .  ~V'N. ,,, I~, ,,,Y"" '>' ..,~,,,~2 (A.69) 

Inser t ing these two re la t ions  in (A.67), we get 

~(a,, b, c; d, e, f ) - , .  / U:,+.,..fg-U:h.,.../ (A.70) 

Next  let us compu te  

~,~...+,~, .... ,:,s,...+,l+,...l~+;r,..->.,,,~:, .... k:l+~...l+l;>.,...>.,,, (A.71) ~ f N ,  p ; k , l . m  ~ ~ N ; k  + p , l +  p , m  ~ N ; k , l . m  

Using (2.36), we get 

PN, kPN.+PN.m k! l! m! 
" ~ ' N . p ; h ' , l . m - - / . j 2  N, k + j(k + J) [ i! j !  h! 

x~,~ , . . .~ ,L  . . . .  ~p,.../~h:,~...~/,...l~,~.,...y;y~...~.+~...~, (A.72) O N : l < + p , l + p , m  

where i = (m + k - l ) /2 ,  j = (m + l -  k)/2, and h = ( l  + k - m) /2 .  Now, using 
again  (2.36), we also have 

(~2  ~U.k + p~N.l+ p/.~U .... (k + p)!( l  + p)! m! 
N : k + p , l + p . m - -  2 (~  . j !  ( h + p ) !  flN, k+j+p~,~ ' -b jq-p)!  i w 

x ~ ,  -"~p=, . . . .  ,/~, .-./~h. ~, .-. a/~ ..-m~', .-. ~; r~ -.. ~=, .-. ~ (A.73) '~" N ; k + p , l + p , m  

Compar ing ,  we get 

~PN. p z k. l. m ~ 
~ ' lN.k / '~N,I  It~,,k+i+e(k+j+P)! 

I 2z i ( k + j ) !  ]'~N,k + p / 2 N . l +  p N , k  +. 

k! l! (h + p)! 
X ( k + p ) ! ( l + p ) ! h ! ( g - x : k + + , . l + p  .... (A.74) 

Us ing  this result,  we can now compu te  ~ N ( p , k + p , l + p ; l , k , m ) .  
Indeed,  using (2.36), we get immedia te ly  

~N(P,  k + p, l +  p; l, k, m) = fl=N, p f l N ,  l f l N ,  k ~,rN, i ; ; k , i  .... 

~ lN ,  p + I • N ,  p + k  
(A.75) 
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Let us now derive a few other  part icular  cases that  are relevant for 
high-temperature expansions. 

Let us first consider the case in which one of  the spins appearing in the 
6 - j  symbols (say, a) is 1. In this case, using the tetrahedral symmetry,  one 
can see that all nonvanishing symbols can be rewritten as ~u(1, k + 1, 
I +  1;/ ,  k, m) or  ~u(1 ,  k +  1, l - -  1; l, k, m), with k, l arbi trary and [ k - l l  <~ 
m ~ k + l in the first case, max( [k - l[, [k - l + 2]) ~ m ~< k + l in the second 
one. The first quanti ty is a part icular  case of  (A.75), while the second one 
can be computed  using the completeness relation (A.70). Indeed we have 

~ u ( 1 , k +  1, 1-- 1; l , k , m )  

1 
=-~t ,v (1 ,  k + l , l + l ; I , k , m ) + ~ c g ~ , : ~ . , < , , + , C C ' N : , ~ . ,  .... (A.76) 

Let us next consider the case in which one of  the spins (say, a) is 2. 
Using the tetrahedral symmetry,  one can rewrite all the nonvanishing 6 - j  
symbols in one of  the following forms: 

sjcl~ _ ~ u ( 2 ,  k + 2 , 1 + 2 ; l , k , m  ) (A.77) N: k, I, m - -  

~r _ ~ x ( 2 ,  k , l + 2 ; l , k , m  ) (A.78) N :  k, I. m - -  

,~r ,.,,, = ~,N(2, k - - 2 ,  l + 2 ;  1, k, m) (A.79) 

~14)N; k, l, m = - ~ N ( 2 ,  k, l; l, k, m) (A.80) 

with k and l arbitrary, m < l + k ,  and m > l l - k [  for ~d ~a~ and ~ At; k, /. m 

ag ~4~ > max( l/ - k[, ] l - k + 2 1 )  for ar ~2~ and m > m a x ( l l - k  ], N:  k, I, m~ D'I N:  k. I, m '  

[ l - - k + 4 1 )  for #/~3) Using the completeness relation (A.70), we can ~ N ;  k, L m" 

rewrite the last two quantities in terms of  the others. Indeed 

1 
~13~ _ ~,ll~ ,.~ 2~ +~4 ~ ' (A.81) = - - -  cgTv: 2. l,/+2cg;<k ..... / ~ A r : k . l , m  ~ " N ; k , l . m  ~ N ; k , l . m  / 'N,I  

1 ~1~4~ _ ~ 2 ~  _ ~ 2 ~  + ~ ~ " (A.82) = - -  (s 2. l, fgTv: ~- ..... / N ; k , l . m  " N; I. k. m ~ N ; I . k - 2 ,  m ~V . I  

o1~2~ o~C~x: k. ~. ,,, is a part icular  case of  (A.75). To compute  ~ N :  ~-. ~ ..... we first use 
(2.36) to get 

o~,12~ _ 2k /,IN, 2/,IN.h./,IN, I 
N : k . l , m - - k +  1 

/-/~q k + i,/-/N, / + 2 

xC.g=/*rL.-.r,a=a, .... ~k-~:,~, .... ~,,,gr,...~,,:/r .... h,, (A.83) N ; l + 2 ,  k . m  N l l .  k . m  
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Then, using again (2.36) and (A.22)/(A.23)/(A.26), we get 

-y 
..412~ 2 k  / IN,  2 / I~V.k / IN. I  (~a/:r �9 . �9 ),1; ~tgi I . . . .  ~ k -  I ;  '11 . . . .  h,, 

~'~ ̂ ':*'/""' = k + 1/i9 ~N:t+2. k .... -N. k + I/iN. I+~- 

X [  / iN .  k f l N .  I (.ft. f ly l  - - -  y; :  61 . - . 6 k  I:ql '"q, , ,  
L/IN.,- I / lN,  I+ I v N: I+ I, k--  I. m 

/ i N . k  ~[h~l(.~),l...yl;r~2...dk_i;.,ll . . . .  h,,] (A.84) 
+ ( k -  1 )  A N ,  k : I / I N ,  I . _2  ~ ~ N ; I . k - - 2  .... 

[where AN, k: t is defined in (A.16)], and thus 

dt2~ k /i3 N. k / iN ,  I 

N:,. t,,,, = N ( N +  2) k + 1/IN, k + I/i U. * - I/iN. t+-" 

[ / I N . I  /iN'k--2,~.N, 2:Lk_2, ml (A.85) X ~V I ; / + l . k - - l . m  
L/IN./+ J ' / iN.k- ~ 

APPENDIX  B. F IN ITE-S IZE-SCALING F U N C T I O N S  FOR THE 
UNIVERSALITY  CLASSES (4.84) 

In this appendix we study the finite-size-scaling functions for the one- 
parameter  family of universality classes (4.84): this family is parametrized 
by a real number  B e  [0, + o v ]  and interpolates between the N-vector 
universality class ( B = 0 )  and the R P  N - t  universality class ( B =  or). In 
particular, we want to study the asymptotic behavior in the perturbative 
regime (y-+ 0) and show that in the even-spin sectors (k = 2, 4,...) the finite- 
size-scaling functions are independent  o f  B modulo nonperturbative correc- 
tions of  order roughly e x p ( - n ' - / 4 y ) .  (We will succeed here in doing this 
only for k = 2, but we conjecture that it is true for all even k.) 

The basic idea can be seen in the simple case of the partition-function 
scaling function 2~~ defined in (4.77). We have 

2(N0~(y; B) -- ~, ,/fiN, le -~'a~'' (B.la) 
/ = 0  

r f_ ~j_ 

= ~ ~4~, . , e - r~ ' . '+e  -rB ~ ArN.,e -r~'''' (B.lb) 
/ = 0  / = 0  

I e v e n  / o d d  

1 + e  -rB 1 - - e  -r8 - 
-- - - - 7 -  2,~(),) + - - - 5 - - -  Zu(~') (B.lc) 
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where we have defined 

2~()~) -  ~ ( +__l)l..#',v. te -~'~'''.' (B.2) 
/ = 0  

It is easy to see that 2~,()~) is of order ) I - ( N -  1 1 / 2  as ),--* 0: roughly speaking, 
for small y the sum over l can be replaced by an integral. On the other 
hand, we shall show that 2~(),) is exponentially small as ) , 4 0 :  more 
precisely, it is of order exp(- rd /4y)  ),-~N-3/2( Thus, the B-dependence of 
Z~I(),;B) is given by the trivial prefactor (1 +e-r~)/2, up to nonper- 
turbative corrections of order roughly exp(-n'-/4y). 

A similar result will be shown for the numerator of the susceptibility 
scaling function " ~0~ ~.. B) [see (4.79)] for k = 2 ,  from which it will follow ZN, I,-tY, 

.co1( B) is independent of B modulo nonperturbative corrections of that ZN._ Y; 
order roughly exp(-~'-/47,). 

The crux of the matter will thus be to control the behavior of Z.~,(y) 
[and the analogous numerator functions] as y ~ 0 .  For N = 2  this is a 
simple consequence of the Poisson summation formula [(B.6) below]: 

2/r =_,(9,) - e - ~'/-' = e -~"'~/r~'''2 (B.3) 
/ = - -  ,-/_ m = - -  ,~_ 

21~=2()'/- F, ( - 1 ) r e  -~'l'= ~ e -'":/r~l''+'/21-~ (B.4) 
1 = _ , - f .  i l l  = - -  ~ ,  

Likewise, for N =  3 the Poisson summation formula controls Z -  (though 
not 2 + ): 

, -s .  

ZN=3()')--=e }'/4 ~ ( - -1) l ( l+�89  -r~1+'/2;" 

= (n~-~/-" ~- 
e r/4 \ ~ /  ,,, =-'_~ ( -- 1)"' (m + �89 e-"~"/r"'" + ,/2,2 ( B . 5 )  

We shall derive the analogous identities for general N by two alternative 
methods: 

(a) By developing generalizations of the Poisson summation formula 
(Sections B.1 and B.4). 

(b) By differentiating the identities for N =  2 or N = 3 with respect to 
~, [e.g., (B.42)]. 
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B.1. Genera l i zed  Poisson S u m m a t i o n  Formulae  

Let  f e  5e( l~)  [i .e. ,  f is a func t ion  o f  one  rea l  v a r i a b l e  t h a t  is inf in i te ly  
d i f fe ren t i ab le  a n d  t ha t  t o g e t h e r  wi th  all  its de r iva t i ve s  van i shes  a t  inf in i ty  
fas ter  t h a n  a n y  inverse  power- I ,  a n d  d e f i n e f ( t )  = ~'~,_ e - " " f ( x )  dx. T h e n  we 
have  the w e l l - k n o w n  Poisson summation formula 

f ( k )  = f(2~r/)  (B.6) 
k = - - o r  1 ~  - . ~  

a n d  its ( less w e l l - k n o w n )  o n e - s i d e d  g e n e r a l i z a t i o n  

f ( 0 ) + 2  f ( k ) =  ~ f ( 2 r d ) + } - ~ P  c o t ~ f ( t ) d t  (B.7) 
k = l  / =  - - ~ -  - - ~  

where  P d e n o t e s  C a u c h y  p r i n c i p a l  va lue  a t  each  o f  the  s ingu la r i t i e s  o f  the  
i n t eg rand .  F o r  a p roof ,  see ref. 43, pp.  31 -32  a n d  64-65 .  H e r e  we wil l  p r o v e  
the fo l l owing  g e n e r a l i z a t i o n  o f  the  o n e - s i d e d  P o i s s o n  fo rmu la :  for  a n y  real  N,  

where  

~- 1 i ~ ~4/N, ~ . f ( k ) = ~  gN( l  ) f ( t )  dt (B.8)  
k = 0 - -  ,7- 

1 --}-e iu+ir') 
KN( t ) = l im i,:l)N- I (B.9a)  

,:1o (1 - - e  i ( l +  

= e -i'~N-2)/2 l im 2 c o s [ ( t  + ie)/2] 
,:~0 { - - 2 i  s i n [ ( t  + ie ) /2 ]  } N - ,  

= e-i'[N--2)/2LN(t) 

(B.9b)  

(B.9c)  

is a we l l -de f ined  d i s t r i b u t i o n  in , ~ , O , ( ~ ) . 4 4  N o t e  a lso  the  r e c u r s i o n  f o r m u l a  

LN+2(t) N ( N - - 1 )  - - ~ 2 - -  LN(t)  (B.10) 

44 Tile existence of (B.9) in the sense of tempered distributions is a consequence of tile following 
theorem (ref. 44. Theorem 2-10, pp. 62-63): If ./ is analytic in the strip 0<  Im z<  R 
and satisfies there the bound If(x+o')l <<- C(I + Ixl ') y - r  for some C, p, r <  oz, then 
l im, . l , f (x+iv)  exists in .cf'(R). Sketch o.fprool! For a test function g~.Y'(R), define 
It(y) = ~ f (x  + 0' ) g(-x) dx. We can compute the derivatives of h using the analyticity off  and inte- 
gration by parts: hU')( v ) = ( - i ) "  J.f(.x+ 0')gC"~(x)dx. It follows that Ih'~ty)l ~< C,, Ilgllt,.,,y -~ 
for a Schwartz norm I1" I1,.,. Starting from n > r and using the fundamental theorem of cal- 
culus, it is easy to show that lira r t .  h(y) exists, with uniform bounds in terms of a Schwartz 
norm ofg. See also ref. 45. Section 12.2, Corollary 4, p. 192 for a similar result. 
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For N integer ~>2, we can make (B.8)/(B.9) more explicit: 

. L  N - -  2 ~/_ 

2 g/A'.kf(k) = X cA'.,, 2 f '" ' (2n/)  
k = 0 I t  = 0 / = - -  , :L 

1 - 1 + e "  
(B.11a) 

N - 2 z 

Y Z ( - l )  N'd'' =0 ,= ~ [e -i ' 'u-z'/2 f ( t ) ]  
I t  - -  ,-/" I = 2 r t /  

/ I  + N e v e n  

1 f .... 2 cos(t/2) 
+~-~P -mx-2~"2f'(t) dt (B.llb) 

.... [ _2is in( t /2)]  u - ,  e 

where the CN.,, and ON.,, are Laurent coefficients (see below), and of course 
)h,, denotes the nth derivative o f f  For N = 2  we will have C2.o=72.o = 1, 
so that in this case (B.11) reduces to (B.7). 

We start from the well-known identity 

~- F ( N + k )  f i  
F(N) k! = ( l - z )  A, (B.12) 

k = 0  

valid for complex z in the disc Izl < 1. ( I f N  is noninteger, we of course take 
the branch that equals 1 at z=0 . )  Using the expression (A.lb) for ot~..a., 
it follows immediately that 

FN(Z)-- ~ .-"l~,.kZk=(1--z)-A' (1--Z 2) 
k = 0  

= ( l - z )  -IN I } ( l + z )  (B.13) 

We will use this identity to construct a "complex-variables" proof of 
(B.8)/(B.9) and (B.11). [It  would be interesting to know whether there is 
a simple "real-variables" proof, as indeed there is for (B.6) and (B.7): see, 
e.g., ref. 43, pp. 31-32 and 64-65.] 

Let us begin by assuming that the function f, in addition to lying in 
~ (R) ,  satisfies the bounds If"'>(x)[ ~< C,,e -'~1-'1 for some constants C,,< oo 
and 3 > 0; later we will relax this assumption. It follows from this that f ( t )  is 
analytic in the strip IIm tl < 6; moreover, in this s t r i p f  vanishes faster than 
any inverse power of IRe tl when IRe t] --, m. So we can use the representa- 
tion 

f ( k )  = 1 f~-. e.af(t  ) dt (B.14) 
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where the con tour  of  integrat ion runs slightly above  the real axis (say, at 
Im  t = e with 0 < e < d). It  follows that  

~ 1 ~'VN.k (e")k f ( t )  dt (B.15) 

This joint  sum/integral  is absolutely convergent  (since le"l = e - ' ; <  l and 
)?(t) decays rapidly at infinity), so we can interchange the summat ion  and 
integration. Using (B.13), we obtain  

1 f'-~ 1 +e"  f(t) dt (B.16) o 'l~;,, kJ'(k) = ~-~ (1 - e ~  ' - '  
k = 0 - -  z 

where the integrat ion still runs at I m t  = c. Since the value of the integral 
is independent  of  e (for 0 < e  < ,5), we can trivially take ~,l, 0, thus proving 
( B.8 )/(B.9) for functions f satisfying the above  restrictions. 

It is easy to remove  the assumpt ion  that  f and its derivatives decay 
exponentially.  Just  apply  the foregoing result to f , ( x ) = - f ( x ) e x p ( - o c x  2) 

and let 0c~,0. Then J~, equals f convoluted  with a Gauss ian  (4zrcc) -~'2 
e x p ( - t 2 / 4 ~ ) ,  and this Gauss ian  tends (in the sense of  distr ibutions)  to a 

delta function as cc ,L 0; therefore, J;, ~ f "  in ~ ( IR)  as a ,[, 0. In part icular ,  the 

r ight-hand side of  (B.8), taken on J~,  tends as 0c~, 0 to its value taken on 
)z.: this is an immedia te  consequence of  the fact that  Ku(t)  defines a dis- 
t r ibut ion in ,V"(IR). On  the other  hand,  the left-hand side of  (B.8) converges 
to its cc = 0 value by virtue of  the domina ted  convergence theorem. 

Let us now assume that  N is an integer >~2, and let us again tem- 
porari ly assume that  f and its derivatives decay exponentially.  Then the 
integral (B.16) at Im  t = e  can be written as the half-sum of  the integrals 
taken over  Im t =  ___e plus the half-difference. N o w  the half-sum is, by 
definition, precisely the principal-value integral in (B.11a)45; on the other  
hand, the half-difference is - h i  t imes the sum of the residues at the poles 
t = 2zrl (1 integer). Using the Laurent  expansion 

1 -t- e"  7_ 
(1 _ e i , ) x  t - -  ~ ax.,,,t'" (B.17) 

m =  - I N - -  I1 

~5 Our "principal-value integral" is the same as the "canonical regularization" of Gerfimd and 
Shilov (refi 43, Sections 1.3 and 1.4). Note, in particular, Eqs. (6), (7), (12), and ( 13 ) in 
Section 1.4.4 (pp. 94 95 ). 
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a round  t =  0 (and of  course an identical expansion at each pole t = 2zfl, 
1 integer), we obta in  (B.11a) with 

i a N . - , , - t  (B.18) 
C N. .  - -  2 11 ! 

We can see that  the leading term in the Lauren t  expansion is 
a,v. - I ,v- t~  = 2iN-~, and hence the highest-derivative coefficient in (B.1 la)  is 
C N . N _ 2  = - - i N / ( N - - 2 ) ! .  In part icular ,  for N = 2  we have c2 ,o=1 ,  so that  
(B.11a) reproduces  (B.7). 

Equivalently,  we can use the Lauren t  expansion 

2 cos(t /2)  ~'- 

[ _ 2 i s i n ( t / 2 ) ] ^ ,  , - ~ ?tU. . , t ' "  (B.19) 
m =  - - I  N - -  I ) 

a round  t = 0 [ a n d  of course an identical expansion multipl ied by ( -  1) N! a t  

each pole t = 2z~/, l integer] .  Note  that  5,v .... -r 0 only  when m + N is odd. 
We therefore obtain  (B.1 lb)  with 

i a,v. , , - i  (B .20)  
?N. t, - -  2 n ! 

Note  that  gX.,, 4=0 only when n + N  is even. The  leading terms are 
C~N. -~,V-*~ = 2 i N - I  and hence CN. N-_" = - - i X / ( N  - 2)!. F r o m  (B.10) we can 
derive the recursion relat ion 

h:v+,_ . , , , -  N ( N - - 1 )  ( m + 2 ) ( m + l ) a u " " + 2 +  5,v .... (B.21) 

which together  with the initial condit ions 82 . -  ~ = 2i and ~3, 2 = - -2  yields 
all the coefficients. Unfor tunate ly ,  we have been unable  to find a closed- 
form solution for this recursion relation. 

The assumpt ion  that  f and its derivatives decay exponent ia l ly  can be 
removed  as before, using the fact that  bo th  terms on the r ight-hand side of  
(B.1 la)/(B.1 lb)  define distr ibutions in 5:'(0~). 

If  N is a real number  < 2  (not  necessarily integer), we can rewrite 
the kernel K u ( t  ) in a somewhat  more  explicit form. Note  that  
Re( 1 - e ic'+i':~) > 0 for all t, hence Jarg( 1 - e"C'+i':~)[ < zc/2. It follows that  

K x ( t ) = 2 2 _ N e i i N _ t , ~ / 2  [COS(t/2)I ei,pt, I 
Isin(t/2)l N - ,  

(B.22) 
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where 

N - 2  
~p(t)- - -  • (t mod 2re) (B.23) 

2 

and t m o d 2 n  is taken to lie in the interval [0, 2n). Since N < 2 ,  (B.22) 
defines a locally absolutely integrable function, hence is unambiguous as a 
distribution. Equivalently, we can write 

LN( t) =- e" N -  2~ t/2KN ( t) = 22 - UeiC'v- I, ~/2 

where 

Icos(t/2)l e;q,I, ~ (B.24) 
Isin(t/2)l N- I 

N - 2  
~(t) - cp(t) + ~ t = ~z(N-- 2)kt/2~z_J (B.25) 

and kxd denotes the largest integer ~<x. 
For N>~2 these formulae are ill-defined because KN( t )  has non- 

integrable singularities at t = 2nl (l integer). For noninteger  N >  2 explicit 
formulae can be obtained by using the recursion formula (B.10) [starting 
from (B.24) at some N < 2 ]  together with integration by parts. (More 
precisely, integration by parts is how one def ines  the derivative of a 
distribution! ) 

Finally, let us go back to (B.9b)/(B.9c) and note an interesting 
property of the kernel L N (valid for all N): we claim that if we decompose 
L u ( t  ) into its symmetric and antisymmetric parts around t = n, 

L ~v( t) - �89 ___ LN(Zrc - - / ) ]  (B.26) 

then the symmetric part L~v(t)  vanishes on the interval 0 < t < 2 n  (i.e., it is 
supported outside this interval). Proof:  The numerator c o s [ ( t + i e ) / 2 ]  is 
obviously antisymmetric around t=z~ in the limit e~0. As for the 
denominator, the function values sin[(t  + ie)/2] and sin{ [(2n - t) + ie]/2}  
belong to the same Riemann sheet of the function z N -  J prov ided  that 
0 < t < 2z~ (and not  otherwise), so that in this case they tend as e + 0 to the 
same point on the Riemann surface. Therefore, the denominator is sym- 
metric around t = ~z in the limit e J, 0 for 0 < t < 2re (and only there). QED 

Of course, the same argument can be made around any point t = 
(21+ 1)n, l integer: the symmetric part vanishes on the interval 2 n / < t <  
2n(l + 1 ). 

This symmetry/support property is of particular relevance in case the 
function e - i ~ u - 2 ~ ' / 2 f ( t )  is symmetric around t = n  (as will be the case in 
our application below). 
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B.2. Some Generalized Theta Functions 

N o w  we shall apply  the generalized Poisson s u m m a t i o n  formulae to 
analyze the asympto t ic  behavior  as }, ~ 0 of  some generalized theta  func- 
tions. Let us define 

ZN. o. :d )' ) -- ~ ~ ,,, e i ' ~  - ~.l,',- + .,:l-' ( B . 2 7 )  
k = O  

which of course is periodic in 0 with per iod 2z~. Applying (B.16) with 
f ( x )  = ei~ -~.c,- + ~l -~, we obtain  

1 ( ~ ) " l z f  '~ l + d '  _ , 
Z N ' ' ' ( ~ ' ) = 2 - ~ \ 7  / _~ (1 - - e ' ~  - I  ei~' ~ 1 7 6  

~-- - -  (_., - iot(J 

Dr _ .-,_ [ - 2 i  s in( t /2)]  ,v- j 

X e il ~ - ( N - 2 ~..'2 It  e - i t - o)2  .4~ . dt 

= - -  e - i~tll 

21r N -  2 _ ~ [ - 2 i s i n ( t / 2 ) ]  N-  2 

(B.28a) 

(B.28b) 

d [ei~ ~ cA, 21-,),e-C, o,~-..4~.]dt (B.28c) 
:":7 

where the con tour  of  integrat ion runs at I m t = e > 0 ;  here (B.28c) is 
obta ined from (B.28b) by integrat ion by parts.  No te  that  the formula  
becomes slightly simpler in the case c~ = ( N - 2 ) / 2 .  

Let us consider first the case of  N integer ~> 2. As before, the integral 
(B.28b) can be writ ten as a principal-value integral plus -Tr i  t imes a sum 
of residues. To  compute  the residue contr ibut ion,  we use the Laurent  
expansion (B.19), yielding 

residue contr ibut ion to ZN, O. ~(~') 

= e - i ~ ' ~  ~ ?U.,, (__I),W d' '  [ e i l ~ - ( N - 2 1 / 2 i ,  e i t - o l ' - / 4 r ]  

it  = 0 I = - .-s ~ t  = 2 h i  

(B.29) 

The  sum over  l is absolutely convergent ,  uniformly on compac t  subsets of  
the half-plane Re ~, > 0, thanks  to the rapid decay of  e - "  o~-/4~, as t ~ ___ or. 
Moreover ,  as 7--* 0 this sum is domina ted  by its leading term(s) ,  namely  
the one(s)  for which 1 2 h i - 0 [  is smallest. 
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Concerning the principal-value integral, we first note that  in certain 
cases it vanishes by symmetry:  If N is an integer, then cos( t~2)~ 

[s in( t /2)]  N- ~ has pari ty ( - 1 )N- ~; it follows that the combinat ion  

e i~~ o. =(Y) + ( - 1 ) N e - "  ,v - ,_ - ~ w 7 �9 e---, N. ~N. -O. U-2-=(Y) (B.30) 

is given exactly by the sum of residues. 46 In particular,  in two cases 
Z,v. o�9 ~(Y) itself is given by the sum of residues (B.29): 

(a) c ~ = ( N - 2 ) / 2 , 0 = 0 ,  N e v e n :  

( / / . ~  I/2 

Z,v.,,.,A,_-'"-' = \ 7 ;  
N- 2 ~ d" 
2 ?:v.,, ,,, ~ [e -'-''4~'] (B.31) 

n = 0 I = -- ,-,:- t = 2 h i  

As ) , ~  0, this sum equals its 1= 0 term (which is of  order  ~, ~,v t~._,) up to 
nonper turbat ive  corrections of  order  e -  ,'-o.y. ~N- 3,2~. Fo r  N = 2 this reduces 
to (B.3). 

(b) c ~ = ( N - 2 ) / 2 ,  O = n ,  N integer (even or odd): 

/ ~ /  I/2 N -- 2 .u- 

Z , v . , ~ . , A ' - 2 v 2  = (-- i)  '~-2 Z ?,','.,, E ( -1)u '  
n = 0 I = -- ,:t_ 

d" [e  ('-nI2/4y] 
X - ' ~ t  t ~ 2 n l  

As ),---, 0, this sum is exponential ly small, of  order  e-"-"4}'), 
N = 2  (resp. N =  3) this reduces to (B.4) [resp. (B.5)].  

Next  let us consider the general case of  N real (not  necessarily 
integer)�9 Symmetrizing (B.28b) a round  t = n, we find 

(B.32) 

{N- 3/2). For  

i ~ 0 7  { ~ - L  i n n  i I N - 2  - ~ 1 0  Z e ~ ,v .o .~o~--e  e x. O.N-2-~(Y) 

X [e  il '~-~ 2)/2~, e _ .  o~2,4~.+ ea~- ,v-2v2~,_~- ,~e-~,_~- , - ,~ ' - /4~.  ] & 

(B.33) 

where LA+(t) is the symmetric part  of  L u ( t )  around t =  n [cf. (B.26)]. As 
discussed in the preceding subsection, L , ~ ( t )  is supported away from the 

ar If  o n e  m a k e s  the  c h a n g e  o f  v a r i a b l e s  t = s + n  a n d  then  uses  the  o d d n e s s  o f  the  f fmc t ion  
�9 . N -  I s m ( s / 2 ) / [ c o s ( . ~ / 2 } ]  ( tb r  a l l  in tegers  N}, o n e  o b t a i n s  t he  s a m e  c o m b i n a t i o n  (B .30L 

~22 86 3-4-13 
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interval 0 < t < 2~z and is the p th  derivative of a polynomially bounded 
function, where p = max(IN_J, 0). The following lemma then implies that 
(B.33) and all its derivatives with respect to y are exponentially small 
whenever 0 : ~ 0 m o d 2 ~ :  more precisely, the nth derivative of (B.33) is 
bounded by const x ), - c p + ~/2 + 2,0 e - 02/4) ., where 

O = min 10 - 2rckl (B.34) 
kE2~ 

In particular, if ct= ( N -  2)/2 and 0 < 0 < 27~, then 

Re[  ei[ t N -  2~o/2 -~/2~ N] Z N. O. (N-- 21/2(~')'] 

is  O ( y - P e  -~ as  y~ ,0  ( ?  real). For  0 = ~ ,  this says that ZN, rc. IN_2)/2() I) 
is O( )' - Pe - n-'/4y). 

I . e mm a .  Let L( t )  be a tempered distribution on R, supported on 
Itl/> O, and define 

f ef_~ 
F(),) = y - t / z  L( t )  e "/4~'dt (B.35) 

--of_ 

for Re ), > 0. Then there exist constants p and C,, such that 

I~"'(~)1 ~< c, ,  l y l - IP+  ,,2 +z, I e-O-' R~t,,4,,, (B.36) 

for n~>0 and (say) 171 < 1. 

Proof .  For some p~>0, L is the p th  derivative of a polynomially 
bounded function f,  i.e., If(t)l ~< C(1 + Itl"'). Thus, for each n >~ 0, 

8 I' O" (7_1/2e_,2/4~.) dt U"'(y) = (--1)P f_~. f ( t ) ~ , ~ ) , , ,  (B.37) 

Clearly 

8 p 0"  - I /2  -~2/4>,) 

~< const(n) x (1 + Itl "+-' ' ') ]71-(P+ I /2+2" e - ' '  R~I~/4~'~ (B.38) 

Integrating over t then proves the lemma. II 

Finally, let us consider the cases in which the principal-value integral 
(for N integer) or the integral over 0 < t < 2n (for N generic) does not  
vanish. In these cases we can obtain an asymptotic expansion for ZN, o, ~()') 
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in powers of y, by the usual method of expanding the integrand of (B.28b) 
around its peak at t = 0. For 0 :~ 0 (mod 270 the result is as follows: 

Z N  0. o ~ ( ~ ) = e - i i N - 2 ) ~  N cos(0/2) 
" [ sin(0/2)] N- I 

x [ l + y { 3 N - 4  - 4  (0~ N 2 2 ) 2  

0 
- - i ( ~  N j 2 ) [ t a n  g + ( N - -  1) cot ~3 

, 39, 

This expansion can be proven rigorously by cutting LN (using a smooth 
partition of unity) into a part supported on the interval e < t < 27r- e (here 
we suppose 0< t<2rc )  and a part supported on the union of intervals 
t<2e and t>27r-2e .  The integral over the first interval is then an 
ordinary integral of smooth functions, and the asymptotic expansion can 
be controlled by standard techniques; while the integral over the second 
region is exponentially small by virtue of the lemma above. 

An alternative way of deriving these formulae is to use a recursion 
formula yielding ZN+2 in terms of ZN; in this way, all integer values of 
N ( >~ 2) can be handled by differentiating the cases N = 2 and N = 3 with 
respect to ),, while all noninteger values of N ( > 0 )  can be handled by 
differentiating one of the cases in the interval 0 < N < 2. The basis of this 
approach is the simple identity 

k (N+k-2 )  
"/WN + 2, k -- I - -  JWN. k (B.40) 

N ( N -  1) 

[see (A.2)]. It follows from this that 

ZN+2"~ --~?,+2i e -  _e2 ZN.O.~(Y) 

(B.41) 

In particular, for 0t = ( N - 2 ) / 2  we get 

( )21 ZN+2. O.N/2()') N(N-- 1) - - ~ - -  ZN. o. ~N- 21/2(Y) (B.42) 
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Clearly, if ZN, O.(N 2}/2(Y) is exponentially small together with all its 
derivatives, then the same holds for ZN + 2,.. o. ~U+ 2,'-2W-()') for every positive 
integer r. 

R e m a r k .  The equivalence of (B.10) and (B.42) comes from the fact 
that y-t/2e-C'-~162 is a solution of the heat equation, hence d/d7 and 
d~-/dt ~- act identically on it; and since these two operators commute, the 
same holds true for multiple applications of these operators: 

, ,  

dTJ \-ff~/ ()'-t/Ze-"-~162 \d~,/ ()'-'/2e-"-~ 

(d2V,,+,, = \-~5_J ( 7 ' - ' 12e - ' t -~  (B.43) 

B.3. The Partition-Function Scaling Function 7(~ B) k N 

Recall from (B.1)/(B.2) that 

1 + e  )'~ 1--e  -rB ~ 
2~'(),; B) - - - - ~  2,~ (y) + - - - ~ -  ZN (),) (B.44) 

where 

2~(),)- L (+l)/o~v.z e-'z''' (B.45) 
/ = 0  

Now 

/ l  N -  2'~ 2 I N - -  2"~ 2 
2 ,v . t - l (N+l- -2)= t + - - ~ ) - - t - - ~ )  (B.46) 

So the functions Z ~  are precisely generalized theta functions of the type 
considered in the preceding subsection; indeed, they belong to the "simple" 
case 0t= ( N -  2)/2: 

2~0 ' )  =,o~,l N-',~2,4,~ ~,v. o. i u-_, ~/2U') (B.47a) 

Z N() ' )  = e r (N-  2)a/4Z N, n. IN-- 2)/2() ')  (B.47b) 

It follows immediately from the results of the preceding subsection that 

2~)(y; B) = 1 + e -""  --------~2,~(~')-k- O(e-n-/4r~ -1N- 3/2,) (B.48) 

as claimed. 
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Remark.  The duality formula (B.3)/(B.4) for ordinary theta func- 
tions is a special case of a modular transformation, and is connected with 
the theory of elliptic functions (refs. 46, 48; ref. 47, Chapter 13); it also has 
applications in string theory. (49) We wonder whether the corresponding 
formulae for integer N>~3 are telling us something deep about the 
Riemannian geometry of the sphere S N- ~. We are intrigued by the fact that 
the generalized theta functions arising from Z~ fall precisely into the 
"simple" case e = ( N - 2 ) / 2 - - i t  cannot be a mere coincidence! And we 
wonder why there is a convergent duality formula for 2 u for all integer N 
[cf. (B.32)], but for 2~, only for even N [cf. (B.31)]. Is this perhaps related 
to the fact that - I e S O ( N )  for N even, but not for N odd? Or to the fact 
that the groups SO(N) fall into different families of the Lie classification for 
N even and N odd? And can our results be generalized to symmetric spaces 
other than S N- ~? 

B.4. Some M o r e  General ized Poisson Summat ion  Formulae 

To handle the numerator of the susceptibility scaling function, we will 
need to study sums of the form Y,k ~ kR(k ) f (k ) ,  where R is a rational 
function and f ~ S e ( R ) .  Unfortunately, such sums are not covered by the 
generalized Poisson formulae of Section B.I: the trouble is that R is typi- 
cally not a smooth function on all of ~, so it cannot be absorbed into f 
Instead, we shall derive some further generalizations of the Poisson sum- 
mation formula, in which R is absorbed into the kernel K x. 

Let, therefore, R be a rational function of the form 

P(x) P(x)  
R(x)  = - -  (B.49) 

Q(x) ( x + f l ~ ) . . . ( x + f l q )  

where P is a polynomial. Let kc, be an nonnegative integer chosen large 
enough so that none of the fl; are equal to an integer ~< - k o .  (That is, R 
does not have any poles at integers ~>ko. When k o = 0  we shall omit it 
from the notation.) We shall then prove a formula of the form 

~.'lSv.kR(k) f ( k )  = KN: R:k.(l) f(1)  dt (B.50) 
�9 k = k o  

In fact, the derivation is virtually identical to that in Section B.I: We intro- 
duce the function 

ct, 

FN:R:k,,(Z)-- ~ JIrN. kR(k)  Z k (B.51) 
k = k o  
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This series converges in the disc Izl < 1, but FN: re:k,, then has an analytic 
continuation to the whole z-plane cut along the ray [ + 1, + s 47 In 
particular, the only singularity of FN: R: k,, on the unit circle is at z = 1, and 
the growth of Fy:re:~-,, as this singularity is approached is bounded by a 
polynomial in I I - z l - ' .  We can therefore introduce the distribution 
KN; re: k,, by 

(~ i (  t + it:)) KN: R: k,,(t) = lim FN: R: k,, ( B.52 ) 
,:10 

and its only singularities are at t = 2 r d  (1 integer). The proof of (B.50) then 
follows exactly as in Section B.1. 

If ko=0 ,  then FN: R c a n  be written explicitly in terms of the 
generalized hypergeometric function ,~+~Fq (defined, e.g., in rel: 37, 
formula 9.14.1, p. 1045): 

FN:R(z)=P(zd)[ ( ~ fl;-' ),~+~F,~(N, fl, ..... fl,~;fl, + l ..... flq+ l;z) 
\ i =  I 

x i =  I 
(B.53) 

47 This follows from ref 47, Theorem 1 I.I.3, pp. 41 43, which states the following: Let p be a 
finite complex measure on [0, I ], with l/t( { 1 } )1 < p, and let it~ -= ~ .x -~ dp(x) be its moments.  
Let k I be any integer such that ] 'x k' I@(x)l < p  Isuch an integer always exists). Let G be 
an analytic function in the disc of radius p centered at the origin. Let J ' ( z )=  5 ~ _  ~, c, z* be 
a function having an analytic continuation to a domain A which is starlike with respect to 
the origin. Then the function defined by Y'~= k, G(p,) c~ z ~ likewise has an analytic continua- 
tion to A. 

We shall apply this theorem as tbllows: Let A be the cut plane C \ [  + l, + ~ ). Let 

�9 k I ] 

.['(='}= ~ . l~v .~ - -~=( [ - - - ) - ' . v - t~ ( I  + - ) _  ~ .l~v.k -k 
k = k l  k = O  

where we will choose k t later. Let dldx)=d.v,  so that Pk = l /(k + 1 ). Let 

so that G(it~)= I / (k+fl)" .  To apply the theorem, it suffices to take kt > 111- I1 -  I. But 
then we can add in "'by hand" the terms k .  ~ k ~< k ~ -  I, provided that none of these values 
of k equals - / L  This proves the chfim for R( . r )= l / (x  +[/)". A general denominator  Q(x) 
then follows by expansion in partial fractions, and a general rational lhnction 
Rlx) = Plx l /Qlx)  Ibllows by application of the differential operator PI :  0/0:). QED 

For q =  1, this special case of the _,F~ corresponds to incomplete beta 
functions. 
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We want now to derive some general properties of these functions. Let 
us thus introduce 

~ 1- ' (N+k)  z k 
f '~(fl ;z)= ~ F(N)  kW (k + fl)'~ k=O 

= f l - q q + , F , , ( N ,  fl ..... f l ; f l + l  ..... f l + l ; z )  (B.54) 

(Here N is fixed, so we suppress it from the notation.) By making a shift 
k ~ k + 1 in the sums, it is easy to derive the recursion relation 

f t l(f3;Z)=j~-q(l--z) l - N + ( 1  N - 1 ) z f , ~ ( f l +  l z )  ~ ' 

q - - |  

- ( N - 1 t z  5". /~"- ' ,- ' f , ,(p+ 1;.,) 
n=] 

(B.55) 

Using this formula, it is easy to get FAt: R for the simplest nontrivial case 
R(x)  = 1/(x +fl): 

'~ . z* 1[  +z(fl+_ls-N)] ( l - z )  ' - u  
Z ~'VU.,k+fl  fl 1 f l + l  J k = 0  

+ z z ( N -  1 ) ( N -  2 -  2fl) f ,(fl + 2; z) 
~(/~+ 1t 

(B.56) 

A simplification occurs for f l=  ( N - 2 ) / 2 :  the last term vanishes, and we 
have the explicit formula 

U 2 ~-=o"'l{v'* k + (  - 2 ) / 2  N - ~  (1 --Z) 2-N (B.57) 

In the following we will be especially interested in the value off,~(fl; z) 
at z =  - 1 .  For q =  1 a general formula can be obtained for f l=  (N/2)+ 
integer. The starting point is Kummer's formula [ref. 50, p. 107, Eq. (47); 
see also ref. 51, p. 50, Theorem 8.6c] 

F(I +a-b) (B.58) 
2r, (a ,  b; "1 + a - b; - 1) = 2 - " x / ~  F( 1 - b- ~a/-~-F-(1-~ + a/Z) 

Setting a = N and b = N/2, we get 

2F, N,~-;~-+ 1; - 1  
r(1 +N/2) 

2 N F((1 +N)/2)  
(B.59) 
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so that 

J 2 x F((1 +N) /2)  
(B.60) 

Using the recursion relations (B.55). it is then possible to compute 
ft(fl; - 1 ) for all fl = (N/2) + integer. 

In the following we will use two specific functions: 

-,'. Z k 

UN(Z)-- Z "r k=o (k+(N--2)/2) 2-1 (B.61) 

V,v( Z ) - .I"x. k �9 k=. [(k+(N_2)/2) 2 1:]2 (B.62) 

These series are well-defined provided that N ~ 4 ,  2, 0 , - 2  ..... Simple 
algebraic manipulations yield 

U l l j ] ( N - 2 ; z ) - ( z Z + l )  + N 2 x ( z ) = ~  . f l (N;z)  z~-f'l(-~+ ; z ) l  (B.63) 

Using now the recursion relation (B.55) forward and backward to express 
everything in terms off,(N/2; z), we obtain (specializing for simplicity to 
- =  - 1 )  

U x ( - 1 ) - ( N _ 2 ) ( N _ 4 ) f ,  ; -1 

= 22  _ t,, x / / ~  F ( ( N - - 4 ) / 2 )  

F( (N-  1)/2) 
(B.64) 

In complete analogy we can compute V,v(-1). Using the recursion rela- 
tions (B.55), we get 

�9 1 6 ( N - 1 ) ( N - 3 )  N 2 
v ,,( -1)  = (--~-L-_ ~ 5 (--~Z -47 f, ( ~ +  ; - 1 )  

24-'v v/~ F((N-4)/2) 
( B.65 ) 

- ( N -  2 ) ( N -  4) F((N-- 3)/2)  

Notice that in principle one would expect here also a term proportional to 
f2(N/2; -1); but for the specific combination which appears in VN(-  1), 
the coefficient of this term vanishes. Notice, finally, that 

( N - - 2 ) ( N - 4 )  V N ( - 1 ) = 2 ( N - - 3 ) U N ( - - 1 )  (B.66) 
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A key cancellation in Section B.6 will rely on this identity but  not on the 
specific values of  UN( -- 1 ) and V N ( -  1 ). 

B.5. S o m e  M o r e  Genera l i zed  Theta  Funct ions 

Let us now introduce some more  generalized theta functions, which 
will play an impor tant  role in our  t reatment  of  the numera tor  of  the 
susceptibility scaling function ./o) t , .  B). We define, for Re ), > 0, AN,  2~; 

i [.  eikO 
e--~,(k + (N-- 2)'2)2 

U,v. o: ,,,()") -= ~ k k =*. (k + ( N -  2)/2)-" - 1 (B.67) 

e - y l k + l N  2) '2)  2 

~,, '[<~ eil<O VN.,: k,,(Y) -- - N.k (B.68) 
a. =k,) [ ( k  + ( N -  2)/2)-' - 1 ]2 

Here ko is an integer; if ~ = ( N - - 2 ) / 2  is an integer, then we require that 
k,  > 1 - ~ in order to avoid zeros of  the denominators .  We wilt thus take 
k,) = 0 except when N is an even integer ~<4. When ko = 0 we omit  it from 
the notation. 

We remark that the functions U,v., and V,v., satisfy recursion relations 
identical to (B.42). 

Applying (B.50) with f ( x )  = #~ -r(.,-+~)-', we obtain 

Uv , ( ) ' ) = - -  - 
�9 " 2 n \ ) , /  J ., 

V~, o()') = ~ 
�9 \ ) , /  J _  .~ 

KCNU)(t) ei~i,-O)e-i, o):,4;, dt (B.69) 

K~"( t )e i~ I ' -~  (' "'~-4>'dt (B.70) 

with the obvious kernels K (U) and K ~v~ For  0 : ~ 0  ( m o d 2 n )  we can then N N " 
obtain an asymptot ic  expansion of  UN.O()') and VN.,(y)  in powers of  y, 
using the lemma of  Section B.2 to control  the contr ibut ion of  the 
singularity. At zeroth order  we have 

lira UN. o(}') = U,v(e i~ (B.71) 

lim VN. o()') = Vx(d" )  (B.72) 
3,40 

and in part icular  these limits are finite. For  0 = n we have calculated these 
limits in (B.64)/(B.65). 
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When 0 = re--which we will assume h e n c e f o r t h - - m u c h  more  can be 
said. The  simplest app roach  is to use the differential equat ions  

1) = -Jr- UN, O: k0()") - - Z N ,  O, { N-- 21/2; k0(Y) 

= Z^,. o. ,v-21/2(Y) 

k 0 -  I 
+ ~ ~N.*~ eik~176 (B.73) 

k = O  

+ 1 VN. o: ko()') = -- UN. o:,,,()') (B.74) 

to reduce the p rob lem to known results for Z,v., .~u 21/2. One  can write 
immediate ly  the solution of  (B.73)/(B.74): 

f( 
Y 

UN. ozl,,o(~ )) = e - ~ ' U N ,  o;k , , (O) - e-C~'-r'lZ N,O,(U--2J/2;ko(~' ) d Y '  (B.75) 
) 

V N . O : / , . , , ( y ) = e - ~ ' V N . o ; I , . o ( O )  - e N.O;ko(~ )dy' (B.76) 

Fo r  N # a n  even integer ~< 4, we can take k o = 0  and use the fact that  
Z^,. ,. ~N-2~/2()') is exponential ly small as y J, 0, to get 

UN, ,~()') = U:v( -- I ) e - ~' + exponent ial ly  small terms (B.77) 

ZN, rc() )) = [ VN( -- l )  - -  U N ( - - 1 )  ~)] e -y  

+ exponent ia l ly  small terms (B.78) 

where UN(- -1 )  and V N ( -  1) have been calculated in (B.64)/(B.65). 
Next  let us treat  the case N = 4 ,  taking k o = 1. We have the initial 

condit ions U 4 . , : t ( 0 ) =  _ 3  and V4.,: 1 ( 0 ) = ~ - r c 2 / 2 4 .  Using the fact that  
Z4, ,, ~(y) is exponential ly small, we get 

'+exponentiallysmallterms ,.79, 

3 1 )  
V4"n:I(Y)= 24 I--4Y-2 ~'2 e - Y + e x p ~  (B.80) 
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Finally let us treat the case N =  2, taking ko = 2. We have the initial 
conditions U2. ,: 2(0) = �89 and V2. ,: 2(0) = ~z2/12 - ~. By the same logic we get 

- ( ~ +  2 y ) e - r  + exponentially small terms (B.81) U2.,,:2(y) = 1 

/~-' 3 1 ) 
V2.=:2(?')=-- l + ~ , ] ~ + ~ + 5 ? ' + ~ ' z ,  e - r  

+ exponentially small terms (B.82) 

Formulae (B.79)-(B.82) can alternatively be derived from {B.77)/(B.78) 
and (B.64)/(B.65) by taking the limits N--+ 2, 4 starting from noninteger N. 

B.6. The Susceptibility Scaling Function X~2(V; B) 

Now we want to prove a formula for the numerator of the suscep- 
tibility scaling function Z~.(9,; B)-- that  is, for the sum appearing in 
(4.79)--analogous to that proven in Section B.3 for the partition-function 
scaling function ~m~t,,. B). We conjecture that such a formula is true for all 
even k, but we shall prove it here only for k = 2. We define 

'-'~ e }'2N. I 

+ ' (B.83) X; . k ( ) ,  ) -  y '  (+l)/CgTV:k./.,,,dU:/ 
L m = 0 

(Note that the properties of the Clebsch-Gordan coefficients guarantee 
that, for k even, l and m in this sum have the same parity. In particular, 
ZJN:I.,,,=2N.,,,--2N.I, independent of B.) We shall prove that Xu. 2(y) is 
exponentially small as y ~ 0, so that the numerator in X~,~ B) becomes 
simply 

1 + e  -rt~ 

2A,~. 2 
- -  X ,.~, 2( )' ) + exponentially small terms (B.84) 

From this and (B.48) it follows immediately that 

2 X,+,z(y) 
z g . ' 2 (  9' ; B )  = . ( + exponentially small terms (B.85) 

In particular, " m~ (.,; B) is independent of B modulo exponentially small ZN._~ 
terms. 
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We start by rewriting X~, 2(9') as48 

Cucchieri et  al.  

X,v.,(~,)= ~ ( _ i ) /  ~,v___~:_,./.t__~+_, ~Te2. t./-2 e-~.;..,., 
~ / = 0  L ZJN;I.I+2 ' ~ N : /  2 . /  J 

9' " )/ ," e-~.;~,,.i (B.86) + 5  y" ( - 1  cr / 
- - / = 1  

where we set ~'~;: 2. z. ~ _, = 0 if 1 = 0, 1. We shall deal with these two sums 
separately. 

Let us suppose first that  N-r 2, 4. For the first sum in (B.86), using the 
formula (2.41), we get 

N(N+2)e~.~,v 2~-"4 ~ ( _ 1 ) /  .i.~-v/ 
16 / = O  

(N-3)(l+(N-2)/2)'- -N~-/2+2N - 1 ) ' ( / + I N  21/2) 2 
• f [(I+(N--2)/2) 2- 1] 2 

N(N+2)e"'c'v 2~'-4(-(N-3) d N2 ) 
16 d T 2 F 2 N - 1  V,v:~(}') (B.87) 

We can then use (B.77)/(B.78) to get 

N(N+2)e"l'v 2 ' - ' 4 [ ( N - 2 ) ( N - 4 )  V . v ( - 1 ) - 2 ( N - 3 )  U,v( -1 )  
32 

-(N-2)(N-4)},Ux(-1)]+exponentiallysmallterms (B.88) 

Using the identity (B.66), we finally get 

N(N-4)(N 2 
32 --4)e~'lx-2F47Ux(-l) 

+ exponentially small terms (B.89) 

as In the final t e rm we have  I=m, a n d  so we mus t  use the c o m m e n t  in foo tno te  39 to resolve 
the a m b i g u i t y  in 14.791. 
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For  the second sum appearing in (B.86), using (2.42) we get 

N 2 - -  4 
- -  Y eyIN-2Z/4 Y'. ( -- 1) / ~'ffN./ 

/ = 0  

x ( l +  (N--  2)/2) 2 -- ( ( N -  2)/2) 2 e _ m + l u  21/,2~: 
( l + ( N - - 2 ) / 2 )  2 -  1 

N-'--4 912/4 I d ( N -  2"~21 
T . . . .  

(B.90) 

Using (B.77), we get 

N ( N - 4 ) ( N 2 - 4 )  

32 
e ~'lu 2}2/4~'UN(-- 1) 

+ exponentially small terms (B.91) 

Collecting together (B.89) and (B.91), we conclude that X,v.2(y) is 
exponentially small as ), + 0. 

Next let us discuss the case N = 2 .  Here ff~:2,/./+_,=2, ~_~:2././_2=2 
for 1>/2, ~ = 0 for l:/: 1, and cg2: 2. i. i cg_~: 2./. t ~ =2 .  Thus 

X_,7 2(y)  = { -- �88 - " - -  ye -Y-- �89 U2. ,: 2() ')  (B.92) 

so that, using (B.81), we get that  Xg2(/,) is exponentially small. 
Finally, for N = 4 ,  using (2.41), we can write 

e-~.;.4.1=9e ( - l ) '  ~+.~ U4 .: ,(~') (B.93) 
/ = 0  '~4 ;  L / + 2  d 4 : / - 2 . /  _1 8 - ' 

while from (2.42) we get 

L ( - 1 ) / g 4 : 2 . / .  , ,e-~.a~., = - 3  + 3e-~'24(~,) 
/ = 1  

(B.94) 

As 2 4 ( 7 )  is exponentially small, it follows from (B.79) that  Xs is 
exponentially, small. 

A P P E N D I X C .  L A R G E - N L I M I T  

In this appendix we discuss the N--* co limit of the finite-size-scaling 
functions for the one-dimensional N-vector universality class. We will first 
discuss the derivation using the s tandard large-N formalism; then we will 
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show in two particular cases (the spin-1 and spin-2 susceptibilities) how to 
recover these results through a direct evaluation of the N ~  oo limit of the 
expressions given in Section 4.2.2. 

C.1. Review of Results from Standard Large-N Formalism 

Let us thus start with the standard large-N formalism/521 Consider, on 
a one-dimensional lattice of length L with periodic boundary conditions, 
the standard N-vector Hamiltonian 

~ ( { ~ } ) =  -J~ ~,.- ~.,.+, ( C . 1 )  
x 

and the partition function 

Z = f ~ o  e-i/II-I, (C.2) 

As is well known, the N ~ oo limit must be taken with J/N fixed. We will 
therefore introduce a rescaled coupling J =  J/N. It then turns out 15-~ that in 
the N ~  o~ limit all correlation functions can be expressed in terms of a 
mass parameter mL which is related to the coupling Y by the gap equation 

- 1 1 
J = z p  ~ /~2 + m ~  (C.3) 

where p = 2rm/L, the sum runs over n = 0 ..... L -  1, and p = 2 sin(p/2). The 
summation in (C.3) can be performed exactly, and thus one gets 

y _  1 coth ( L  arcsinhmg-~ -) (C.4) 
,nz. x/4 + m~. 

We can now take the limit N--, oo at fixed J=J/N and fixed L. All the 
two-point correlation functions (and indeed all the correlation functions) 
can be easily computed: ~Szl the result is 

1 e'P" 
G~.,k(x, J; L) = -f~ ~-7--~ 

p- + m~J 

coshk[ (L -- 2x) arcsinh(mL/2) ] 
cosh~[L arcsinh(mL/2)] 

(C.5a) 

for O<~x<L (C.5b) 
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From this expression one immediately gets for the susceptibilities 

1 k 1 
X~.k(Y; L)=(yL)  k ~ LO(p, + ... + Pk) L-~VI ^9 9 

p,,....rk i= pT+mz 

L- I c o s h k [ ( L _  2x) arcsinh(mL/2)] 

= ~ coshk[L arcsinh(m/_/2)] 
. x - ~ 0  

For k = 1, 2 one gets simpler expressions: 

(C.6a) 

(C.6b) 

1 
X~., ,(J; L) = (C.7) 9 

Jm - z 

Z~.2 ( y ;L )=  -91 09 [ , .~-~-r----~coth L a r c s i n h ~ -  (C.8) 
J- Omz L mL ~/4 + m~ 

Analogously one can compute the correlation lengths. For  example, in the 
spin-I channel we get 

1 (2nd)(7" L) = - -  (C.9) 
mL 

Having taken the limit N--* oo, J ~ oo at fixed Y =- J/N and fixed L, we 
can now take either one of two further limits: 

(a) The standard infinite-volume limit L ~ ~ at fixed J. This limit is 
trivial and corresponds simply to the substitution of all sums by the corre- 
sponding integrals and the parameter mL by m , .  In particular, the gap 
equation becomes 

y= I ~ dp 02 1 1 (C.IO) 
-,~2~ +m~o m~ .~ /4+m~ 

(b) The finite-size-scaling limit L ~ o o ,  Y--*c~ [hence ~ o o ]  at 
fixed ~/L. From (C.9) we immediately see that this corresponds to con- 
sidering the limit L ~ co, mL ~ 0 with raiL--p  fixed. The variable p is the 
natural one in the finite-size-scaling limit of the N = oo model, and all the 
finite-size-scaling functions will be expressed in terms of it. 

Let us first derive the FSS function for the correlation length x~2,d) ~ , , I  ' 

Equating the right-hand sides of (C.4) and (C.10) and taking the limit 
m~,. --* 0, m c --+ 0, L ~ oo with p fixed, we get 

~ , l , ~ ,  m~ tanh p_ (C.11) 
~_,,d)(~) mL 2 
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All the other  FSS functions can be compu ted  analogously.  For  the spin-1 
and spin-2 susceptibilities we get 

Z~. , ( L )  = tanh_~ p__ ( C . 1 2 )  
Z .... i (~176 2 

Z.~_.=(L) = t a n h 2  p p s inh(p/2)  
Z..,.2{co) ~--I 2 cosh-~(p/2) (C.13) 

C.2. A l ternate  Der ivat ion f rom Hyperspher ica I -Harmonics  
Formalism 

Let us now compare  our  results with those of  Section 4.2.2. In that  
section we took  first the finite-size-scaling limit L--+ m,  J ~  m at fixed 
7 ==- L A ( J ) ~ L / ( 2 J )  and fixed N; now we want  to take the further limit 
N ~ m,  ), ~ 0 at fixed p = N),. 49 We want  to show that  we recover the same 
results as in the preceding subsection; in o ther  words, we want  to show 
that  the two limits commute .  

We need first to find the relation between ~ and p. This  is easily 
obta ined if one considers in (C.4) the limit ] - - ,  ~ ,  L ~ co, m L --, 0 with 

= L / ( 2 ] )  and p fixed. We get 

1 1 coth p- (C.14) 
p p 2 

Let us begin by comput ing  the limit N ~ co, ), ~ 0 at fixed ~ = N7 of  
the par t i t ion-funct ion scaling function 

2c,~(~,)  = ~ . tSv./e -''~'.'.' ( C . 1 5 )  
/ = 0 

[cf. (4.77)]. Since ), is tending to zero, it is natural  to apply the generalized 
Poisson summat ion  formulae of Appendix  B. Using (B.28c), we get 

Ut)~= 2# f \  f / ~ e x p  4N J 

. + i,: ( t '~" - N 
XJ'_+?+i,: d t t e  -:v''-''49, - - 2 i s i n ~ ) -  (C. I6)  

4,, This is clearly the correct scaling, since ), ~ L/I 2J)= L/{2NJ). 
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where e > 0  is arbitrary (the integral is independent of e). The large-N 
asymptotic expansion of this integral can be obtained by the standard 
saddle-point technique. We rewrite the integral as 

f+"+; ' :  ( t )  2 
- ~ +i,: dt t - 2 i s i n  2 e a'/~'~ (C.17) 

with 

,: 
f ( t ) -  4~ log --2isin (C.18) 

We must now find a saddle point, i.e., a solution o f f ' ( t ) = 0  with I m t  > 0. 
We find t = ip, where p is the unique positive solution of (C.14). Expanding 
around the saddle point, we get 

J dt t - 2 i s i n  e vt~'~ 
s 4-h: 

p 2 . 2~ 1 ,)12 

Collecting everything together, we get 

2'~"(?') =_~)~ - + 8  sint(2(p/2) 

 ,n ff 'E (1)l 
1 + O (C.20) 

In order to compute the large-N behavior of the finite-size-scaling 
functions for the susceptibilities, we must also evaluate the large-N 
behavior of more general sums of the form 

, I'i'v. kR(k) e -:'lk+l'v 2"-12 (C.21) 
k =11 

where R is a.rational function of the tbrm 

P(x) 
R(x) = (C.22) 

(x + fl ,) . . .  (x + fl,,) 

and P(x) is a polynomial. The coefficients of P(x) and the fl,. are in 
general N-dependent. These series can be handled using the generalized 

S22 86 3 4-14 
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Poisson summation formula (B.50). As an example let us determine the 
large-N behavior of the sum 

~- 1 e - ;[k + I N- 21/21 ]-'/U (C.23) 
~, ArN, k (k + N/2 +oc),~ 

k = 0  

The N-dependence of the denominator is the one which appears in the 
finite-size-scaling functions of the susceptibilities. We want to compute 
its large-N behavior for ~ and ~ fixed. Using (B.50) with f i x ) =  
exp[ - (~ /N) (x  + (N-2)/2)2], we can rewrite the sum as 

- -  dt e i l N -  21 t /2e  - Nt2/(4Y) 
2~\ ~ / -.~_+i~. 

N e i t ) - 2 i '  (cc+2 + N ;  x [ f,~ (~ + ~-; e'fq ei ' ) l  (C.24) 

whereJlt(fl; z) is defined in (B.54). In order to compute the limit N--+ oo of 
the integral we must discuss the large-N expansion off~(~+N/2; z). The 
leading order is easily obtained if one notices that it is independent of ~. In 
this case one can use the recursion relation (B.55) to compute it. For q = 1 
we get for N--+ oo 

f ,  oc+-~;z = ~ ( 1 -  - . ,  1 + =  

from which 

( f, U 1 + O  (C.26) 

A similar formula, which can be proved by induction, is valid for generic q: 

( N ) (2 )" (1-z )q- :v[  (1 )]  
f ,  = + ~ - ; z  = ( l + z ) "  1 + O  (C.27) 

Using this expansion, one can rewrite (C.24) in the limit N--+ oo as 

i (zcN)'/2(2),, f +.~_+i~ (l_ei,'~q 
- -  dt sin t e ur ' (C.28) 

n T J ~+i,_ _ . \ l + e  i') 

where f{t) is given in (C.18). The large-N expansion of the remaining 
integral is then obtained by using the same method as used for the parti- 
tion function. We get finally 
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A:U.k (k + N/2 +o~),/e -;Ek+ (C.29) 
k = O  

= ) ' ~ - ' / 2 ( N ) " e x p : N p ' - ~ [ ~ + \  4~ J 8 sinh~-(p/2)]l 

I /2  

( )NI (1)1 x (sinh p) (tanh P--'~q 2 sinh 1 + O (C.30) 
\ 2/ 

Generic sums of the type (C.21) can be handled exactly in the same 
way using the generalized Poisson formula (B.50). In this case what one 
needs is the large-N behavior of the kernel F,v: R(z). To get explicit 
formulae we must specify the N-dependence of the coefficients fl,.. We will 
assume fl; = N/2 + o~, which is the dependence of the sums appearing in the 
finite-size-scaling functions of the susceptibilities. Using the fact that the 
generic kernel is obtained by summing and taking derivatives with respect 
to z of ill, using (C.27) we see that generically the large-N behavior of 
FN: R(z) is given by 

FN: R(Z) = NP( 1 -- z) - ,,,r FR(:) [ 1 + O( l/N)] (C.31) 

where Fn(z) is a rational function of z independent of N, and p is an 
integer. Then we obtain the general formula 

~f 

o:l~v, kR(k) e ;tk +lN--2~/21"-/U 
k = 0  

\ 4~ ,] ~-~ 8 sinh2(p/2) 

(sinh p) ~'g(e-") (2 p -N x sinh ~ ) [ 1 + O ( 1 ) 1  (C.32, 

Thus the whole computation boils down to the computation of-FR(z). 
In some cases it is possible to simplify the computation by using a 

relation between the large-N behavior of different series. Indeed let us 
differentiate (C.32) with respect to ~. Keeping only the leading-N contribu- 
tions, we get 

N ~ Jg:v. kR(k) k +  e -F[k+IN-2)/212/N 

k = 0  

NP 2 / ' ~  : IN-2)/212/N)[ 
4~- \k=0 ' 

(C.33) 
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where we have used the relation (C.14) to eliminate the terms proportional 
to dp/d~. In the large-N limit we can of course substitute (k + ( N - 2 ) / 2 )  2 
by (k + N/2 + oO(k + N/2 + fl), where ~ and fl are arbitrary. Thus we get the 
relation 

" ( N ) (  N ) {,v- 2 },,2]-':,v ~,, .,f;v.a-R(k) k+ +~ k + ~ + f l  e -'t`'+ 
k = ( I  

=(Np)2 2 "-'lLTv.k R(k) e - ; t ~ + " v - 1  + O (C.34) 
\ 2~ / * =o 

This formula will allow us to compute the large-N behavior of the sums 
appearing in the numerators of the spin-1 and spin-2 susceptibilities. 

Let us start with the spin-1 case. Using (2.39), we get 

e T2"r I 

Z (~N: I . I .  m A 
/.ltl z~l A~: L I.~l 

N ( N -  3) 

4 

e TAN' / 

Y', �9 +k, ( c . 3 5  
; ' ( l+N/2 - -  1/2)(1+N/2-3/2) 

Using (C.34) with ~ = - 1/2, fl = -3/2, we get 

- 2 , ,~ ' ( ) , )  1 + o "~' ~ ~': I' ; '" '  A.v:;" \ p /  
/.111 m 

(C.36 

and thus 

I',, - (C.37) Rx: , . . ( ) ' ) =  = t a n h  2p 
2 

which coincides with (C.12). 
In order to evaluate the large-N limit of the finite-size-scaling function 

for the spin-2 susceptibility, we need to evaluate the series (B.67) and 
(B.68). Using again (C.34), we get 

Z "g"\' k 1 
k=o " [ ( k + ( N - 2 ) / 2 )  2 - 1 ]  '~e 

- ~ [ k + l N  2 1 / 2 1 2  N 

c )E =(2~'~2'r Z ~i{v. ke-;.tk+,,,'-2, z]:,,v 1 + O  
\Np)  \k =,, 

(C.38) 
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Then using (B.86), (B.87), and (B.90), we get 

~- e - y2,v. / 

Z (~N; 2./.m A 
I ,  m = 0 " ~  N :  I ,  m 

NItanh2P ~ 1 .1 I ( 1 / 1  =~- ~+2coshZ(p/2)j  2',~]'(~,) 1 + O  (C.39) 

and thus 

~o~ p y 1 
Rz: ,~.. 2(Y) = tanh2 ~ + 2 cosh2(p/2) 

Using (C.14), one immediately sees that (C.40) agrees with (C.13). 

(C.40) 
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